Skip to main content
Log in

A Quantum Chemical Study of Outstanding Structural, Electronic and Nonlinear Optical Polarizability of Boron Nitride (B12N12) Doped with Super Salt (P7BaNO3)

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Theoretical study of super salt doped on B12N12 was conducted using density functional theory. B3LYP is used with basis set LanL2DZ (a suitable basis set for metal atoms). The structural properties were characterized by molecular geometry analysis, global stability factors, non-covalent interaction, molecular electrostatic potential and infra-red vibrational spectra analysis. The electronic properties were observed by FMOs analysis, the density of states analysis, non-bonding orbitals analysis, excitation energy and transition density matrix analysis. The nonlinear optical properties were observed by calculating polarizability and hyperpolarizability. The values were outstandingly incremental in all the above results compared to B12N12. The hardness values of all complexes are lower (0.41–1.19 eV) as compared to B12N12 (3.42 eV). The excitation energy of all the complexes was observed lower (0.84–2.92 eV) than higher value of B12N12 (5.84 eV). The hyperpolarizability values significant increases in the doped complexes that was observed (up to 922.80 a.u and 334,849.62 a.u in BNSS4a, respectively) as compared to B12N12 (158.19 a.u and 0.000751 a.u, respectively).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Ishaq et al., DFT study of superhalogen-doped borophene with enhanced nonlinear optical properties. J. Mol. Model. 27(6), 1–11 (2021)

    Article  Google Scholar 

  2. R.A. Shehzad et al., Exploring the optoelectronic and third-order nonlinear optical susceptibility of cross-shaped molecules: insights from molecule to material level. J. Mol. Model. 27(1), 1–10 (2021)

    Article  Google Scholar 

  3. C.-G. Liu et al., Redox-switchable second-order nonlinear optical responses of push–pull monotetrathiafulvalene-metalloporphyrins. Inorg. Chem. 48(14), 6548–6554 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. N. Kosar et al., Doping superalkali on Zn12O12 nanocage constitutes a superior approach to fabricate stable and high-performance nonlinear optical materials. Opt. Laser Technol. 120, 105753 (2019)

    Article  CAS  Google Scholar 

  5. S. Muhammad et al., Exploring the twisted molecular configurations for tuning their optical and nonlinear optical response properties: a quantum chemical approach. J. Mol. Graph. Model. 102, 107766 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. R. Fatima et al., Exploring the potential of tetraazaacene derivatives as photovoltaic materials with enhanced photovoltaic parameters. Int. J. Quantum Chem. 122, e26817 (2021)

    Google Scholar 

  7. M. Ilyas et al., A DFT approach for finding therapeutic potential of two dimensional (2D) graphitic carbon nitride (GCN) as a drug delivery carrier for curcumin to treat cardiovascular diseases. J. Mol. Struct. 1257, 132547 (2022)

    Article  CAS  Google Scholar 

  8. R.A. Shehzad et al., Quantum chemical approach to study TIPSTAP derivatives with anticipated minimized crystal roughness for photovoltaic application with estimated PCE of over 20%. Sol. Energy 237, 96–107 (2022)

    Article  Google Scholar 

  9. H. Zahid et al., Designing phenyl-di-p-tolyl-amine-based asymmetric small molecular donor materials with favorable photovoltaic parameters. Optik 256, 168739 (2022)

    Article  CAS  Google Scholar 

  10. K.S. Novoselov et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Zonarsaghar, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Co-precipitation synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. J. Mater. Sci.: Mater. Electron. 33(9), 6549–6554 (2022)

    CAS  Google Scholar 

  12. S. Zinatloo-Ajabshir et al., Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46(11), 17186–17196 (2020)

    Article  CAS  Google Scholar 

  13. A. Zonarsaghar, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Sonochemical synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. Int. J. Hydrogen Energy 47(8), 5403–5417 (2022)

    Article  CAS  Google Scholar 

  14. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J. Clean. Prod. 222, 103–110 (2019)

    Article  CAS  Google Scholar 

  15. G. Hosseinzadeh, N. Ghasemian, S. Zinatloo-Ajabshir, TiO2/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity. Inorg. Chem. Commun. 136, 109144 (2022)

    Article  CAS  Google Scholar 

  16. S.M. Tabatabaeinejad et al., Magnetic Lu2Cu2O5-based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Adv. 11(63), 40100–40111 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Recent advances in nanostructured Sn–Ln mixed-metal oxides as sunlight-activated nanophotocatalyst for high-efficient removal of environmental pollutants. Ceram. Int. 47(17), 23702–23724 (2021)

    Article  CAS  Google Scholar 

  18. S. Zinatloo-Ajabshir et al., Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. J. Alloys Compd. 791, 792–799 (2019)

    Article  CAS  Google Scholar 

  19. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Rapid and green combustion synthesis of nanocomposites based on Zn–Co–O nanostructures as photocatalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Sep. Purif. Technol. 280, 119841 (2022)

    Article  CAS  Google Scholar 

  20. N. Naeem et al., Dopant free triphenylamine-based hole transport materials with excellent photovoltaic properties for high-performance perovskite solar cells. Energy Technol. 10(2), 2100838 (2022)

    Article  CAS  Google Scholar 

  21. J. You et al., Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 8(1), 63–97 (2019)

    Article  Google Scholar 

  22. R.A. Shehzad et al., Enhanced linear and nonlinear optical response of superhalogen (Al7) doped graphitic carbon nitride (g-C3N4). Optik 226, 165923 (2021)

    Article  CAS  Google Scholar 

  23. R.A. Shehzad et al., Electro-optical and charge transport properties of chalcone derivatives using a dual approach from molecule to material level simulations. Comput. Theor. Chem. 1203, 113349 (2021)

    Article  CAS  Google Scholar 

  24. A.K. Srivastava et al., Application of superhalogens in the design of organic superconductors. New J. Chem. 41(24), 14847–14850 (2017)

    Article  CAS  Google Scholar 

  25. S. Shafiq et al., DFT study of OLi3 and MgF3 doped boron nitride with enhanced nonlinear optical behavior. J. Mol. Struct. 1251, 131934 (2022)

    Article  CAS  Google Scholar 

  26. T. Ishfaq et al., Enhancement in non-linear optical properties of carbon nitride (C2N) by doping superalkali (Li3O): a DFT study. Comput. Theor. Chem. 1211, 113654 (2022)

    Article  CAS  Google Scholar 

  27. S. Giri, S. Behera, P. Jena, Superalkalis and superhalogens as building blocks of supersalts. J. Phys. Chem. A 118(3), 638–645 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. G.N. Reddy et al., Zintl superalkalis as building blocks of supersalts. J. Mol. Model. 24(11), 1–13 (2018)

    Article  Google Scholar 

  29. R.D. Dennington, T.A. Keith, J.M. Millam, GaussView 6.0.16 (Semichem Inc, Shawnee, 2016)

    Google Scholar 

  30. F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, R. Kobayashi, K.R.J. Normand, A. Rendell, Gaussian 09 (Gaussian Inc, Wallingford, 2009)

    Google Scholar 

  31. E. Engel, R.M. Dreizler, Density Functional Theory (Springer, Berlin, 2013)

    Google Scholar 

  32. I.Y. Zhang, J. Wu, X. Xu, Extending the reliability and applicability of B3LYP. Chem. Commun. 46(18), 3057–3070 (2010)

    Article  CAS  Google Scholar 

  33. S. Huzinaga et al., Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdam, 2012)

    Google Scholar 

  34. B. Power et al., Structures of bare and singly hydrated [M (Ura-H)(Ura)] + (M = Mg, Ca, Sr, Ba) complexes in the gas phase by IRMPD spectroscopy in the fingerprint region. Int. J. Mass Spectrom. 378, 328–335 (2015)

    Article  CAS  Google Scholar 

  35. Q. ul Ain et al., Designing of benzodithiophene acridine based donor materials with favorable photovoltaic parameters for efficient organic solar cell. Comput. Theor. Chem. 1200, 113238 (2021)

    Article  CAS  Google Scholar 

  36. M. Bourass et al., DFT theoretical investigations of π-conjugated molecules based on thienopyrazine and different acceptor moieties for organic photovoltaic cells. J. Saudi Chem. Soc. 20, S415–S425 (2016)

    Article  CAS  Google Scholar 

  37. Y.A. Duan et al., Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. J. Comput. Chem. 34(19), 1611–1619 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. M.R.S.A. Janjua et al., Theoretical and conceptual framework to design efficient dye-sensitized solar cells (DSSCs): molecular engineering by DFT method. J. Clust. Sci. 32(2), 243–253 (2021)

    Article  CAS  Google Scholar 

  39. M.E. Köse et al., Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. J. Am. Chem. Soc. 129(46), 14257–14270 (2007)

    Article  PubMed  Google Scholar 

  40. Y. Kurashige et al., Theoretical investigation of the excited states of coumarin dyes for dye-sensitized solar cells. J. Phys. Chem. A 111(25), 5544–5548 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. A.S. Rad, K. Ayub, Nonlinear optical and electronic properties of Cr-, Ni-, and Ti-substituted C20 fullerenes: a quantum-chemical study. Mater. Res. Bull. 97, 399–404 (2018)

    Article  CAS  Google Scholar 

  42. S. Muhammad et al., Benchmark study of the linear and nonlinear optical polarizabilities in proto-type NLO molecule of para-nitroaniline. J. Theor. Comput. Chem. 18(06), 1950030 (2019)

    Article  CAS  Google Scholar 

  43. H.S. Kettouche, A. Djerourou, Insights into the origin of selectivity for [2 + 2] cycloaddition step reaction involved in the mechanism of enantioselective reduction of ketones with borane catalyzed by a B-methoxy oxazaborolidine catalyst derived from (–)-β-pinene: an HMDFT and combined topological ELF, NCI and QTAIM study. Theoret. Chem. Acc. 140(11), 1–11 (2021)

    Article  Google Scholar 

  44. A.S. Rad, K. Ayub, A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J. Alloys Compd. 672, 161–169 (2016)

    Article  Google Scholar 

  45. S. Cox, D. Williams, Representation of the molecular electrostatic potential by a net atomic charge model. J. Comput. Chem. 2(3), 304–323 (1981)

    Article  CAS  Google Scholar 

  46. U. Yaqoob et al., Structural, optical and photovoltaic properties of unfused non-fullerene acceptors for efficient solution processable organic solar cell (estimated PCE > 12.4%): a DFT approach. J. Mol. Liq. 341, 117428 (2021)

    Article  CAS  Google Scholar 

  47. M. Bourass et al., DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chem. Cent. J. 10(1), 67 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  48. F.C. Franco Jr., A.A.B. Padama, DFT and TD-DFT study on the structural and optoelectronic characteristics of chemically modified donor-acceptor conjugated oligomers for organic polymer solar cells. Polymer 97, 55–62 (2016)

    Article  CAS  Google Scholar 

  49. A.U. Khan et al., DFT study of superhalogen and superalkali doped graphitic carbon nitride and its non-linear optical properties. RSC Adv. 11(14), 7779–7789 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A.U. Khan et al., DFT study of superhalogen (AlF4) doped boron nitride for tuning their nonlinear optical properties. Optik 231, 166464 (2021)

    Article  CAS  Google Scholar 

  51. C. Qin, A.E. Clark, DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells. Chem. Phys. Lett. 438(1–3), 26–30 (2007)

    Article  CAS  Google Scholar 

  52. R. Zaier, S. Ayachi, DFT molecular modeling studies of D-π-A-π-D type cyclopentadithiophene-diketopyrrolopyrrole based small molecules donor materials for organic photovoltaic cells. Optik 239, 166787 (2021)

    Article  CAS  Google Scholar 

  53. A. Raza Ayub et al., Super alkali (OLi3) doped boron nitride with enhanced nonlinear optical behavior. J. Nonlinear Opt. Phys. Mater. 29(01n02), 2050004 (2020)

    Article  CAS  Google Scholar 

  54. A. Abate et al., Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15(7), 2572–2579 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. S.A. Hawks et al., Relating recombination, density of states, and device performance in an efficient polymer: fullerene organic solar cell blend. Adv. Energy Mater. 3(9), 1201–1209 (2013)

    Article  CAS  Google Scholar 

  56. W. Morningstar et al., Density of states estimation for out of distribution detection, in International Conference on Artificial Intelligence and Statistics, PMLR (2021)

  57. Z. Demircioğlu, Ç.A. Kaştaş, O. Büyükgüngör, Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino) methyl)-3-methoxyphenol. J. Mol. Struct. 1091, 183–195 (2015)

    Article  Google Scholar 

  58. M.D. Mohammadi, H.Y. Abdullah, The adsorption of chlorofluoromethane on pristine, and Al-and Ga-doped boron nitride nanosheets: a DFT, NBO, and QTAIM study. J. Mol. Model. 26(10), 1–15 (2020)

    Google Scholar 

  59. Y. Li, C. Ullrich, Time-dependent transition density matrix. Chem. Phys. 391(1), 157–163 (2011)

    Article  CAS  Google Scholar 

  60. Q. Tang, W. Zhu, Measurement-induced phase transition: a case study in the nonintegrable model by density-matrix renormalization group calculations. Phys. Rev. Res. 2(1), 013022 (2020)

    Article  CAS  Google Scholar 

  61. K.Q. Kayani et al., Tris-isopropyl-sily-ethynyl anthracene based small molecules for organic solar cells with efficient photovoltaic parameters. Comput. Theor. Chem. 1202, 113305 (2021)

    Article  Google Scholar 

  62. N.H. List et al., Relation between nonlinear optical properties of push–pull molecules and metric of charge transfer excitations. J. Chem. Theory Comput. 11(9), 4182–4188 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Taif University Researchers Supporting Project Number (TURSP-2020/162), Taif University, Taif, Saudi Arabia.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ARA*: Writing the paper, the acquisition, drafting, analysis, working and interpretation of data. UY: Writing the paper, the acquisition, drafting, analysis, working and interpretation of data. SR: Writing the paper, the acquisition, drafting, analysis, working and interpretation of data. RAS: Writing the paper, the acquisition, analysis, or interpretation of data; drafted the original work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. JI*: Substantial contribution to research design, the acquisition, analysis and interpretation of data, and approval of the submitted and final version. KHM: Writing the paper, the acquisition, drafting, analysis, working and interpretation of data. KAE: Writing the paper, the acquisition, drafting, analysis, working and interpretation of data.

Corresponding authors

Correspondence to Javed Iqbal or Hui Li.

Ethics declarations

Conflict of interest

There are no known conflicts of interest associated with this publication from all authors, and there has been no financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, A.R., Yaqoob, U., Rafiq, S. et al. A Quantum Chemical Study of Outstanding Structural, Electronic and Nonlinear Optical Polarizability of Boron Nitride (B12N12) Doped with Super Salt (P7BaNO3). J Inorg Organomet Polym 32, 3738–3764 (2022). https://doi.org/10.1007/s10904-022-02371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02371-4

Keywords

Navigation