Skip to main content
Log in

Hybrid Nanoarchitectonics of Chitosan-Cerium Oxide Nanoparticles for Anticancer Potentials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The aim of this study was to synthesize green cerium oxide nanoparticles (CeO2–NPs) and coat them with chitosan polymers to increase bioavailability and their effectiveness in anti-cancer studies. For the synthesis of CeO2–NPs, aqueous rosemary leaf extract (RLE) was used as a reducing and stabilizing agent, and after characterizing the nanoparticles (DLS and XRD), a coating of chitosan around the nanoparticles (CeCh–NPs) was created by ionic gelation method. After characterizing (DLS, Zeta potential, FTIR and FESEM) and confirming the presence of nanoparticles, its toxicity effects were evaluated by MTT method and its pro-apoptotic effects were evaluated by qPCR (Caspase 3 and 9) and flow cytometric analysis. CeO2–NPs were formed with uniform dispersion (PDI: 0.25) in nanometer dimensions (184.84 nm) and after coating, their size increase to 202.35 nm was confirmed by DLS method. The CeCh–NPs were spherical, stable (ζ potential: + 35.4 mV) and uniformly dispersed (PDI: 0.27). The median concentrations of nanoparticles against AGS, A459, PC3 and HFF cells were reported to be about 156.02, 169.1, 155.8 and 307.5 μg/ml. Increased expression of caspase 3 and 9 genes as well as increased percentage of SubG1 phase cells in flow cytometry confirmed the occurrence of apoptosis in treated cells. The results of this study confirmed the anticancer properties of CeCh–NPs by relying on the apoptosis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Yadavalli, D. Shukla, Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine 13(1), 219–230 (2017)

    Article  PubMed  CAS  Google Scholar 

  2. X. Fang, H. Song, Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative ability and biocompatibility for the spinal cord injury repair. J. Photochem. Photobiol., B 191, 83–87 (2019)

    Article  CAS  Google Scholar 

  3. E. Nourmohammadi et al., Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J. Cell. Physiol. 234(4), 4987–4996 (2019)

    Article  PubMed  CAS  Google Scholar 

  4. A. Asati et al., Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9), 5321–5331 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. M.S. Wason, J. Zhao, Cerium oxide nanoparticles: potential applications for cancer and other diseases. Am. J. Transl. Res. 5(2), 126 (2013)

    PubMed  PubMed Central  CAS  Google Scholar 

  6. A.V. Nasalapure et al., Novel polymeric hydrogel composites: synthesis, physicochemical, mechanical and biocompatible properties. Nova Express 2(3), 030003 (2021)

    Article  Google Scholar 

  7. R. Prabhu et al., Polyaniline-fly ash nanocomposites synthesized via emulsion polymerization: physicochemical, thermal and dielectric properties. Mater Sci. Energy Technol. 4, 107–112 (2021)

    CAS  Google Scholar 

  8. K. Kalantari et al., Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur. Polym. J. 134, 109853 (2020)

    Article  CAS  Google Scholar 

  9. S. Chigurupati et al., Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 34(9), 2194–2201 (2013)

    Article  PubMed  CAS  Google Scholar 

  10. R. Singh et al., Redox-sensitive cerium oxide nanoparticles protect human keratinocytes from oxidative stress induced by glutathione depletion. Langmuir 32(46), 12202–12211 (2016)

    Article  PubMed  CAS  Google Scholar 

  11. A. Mbemi et al., Impact of gene-environment interactions on cancer development. Int J Environ Res Public Health 17(21), 8089 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  12. A. Datta et al., Pro-oxidant therapeutic activities of cerium oxide nanoparticles in colorectal carcinoma cells. ACS Omega 5(17), 9714–9723 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. W.L. Stone et al., The role of antioxidants and pro-oxidants in colon cancer. World J. Gastrointest. Oncol. 6(3), 55 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  14. W.A. Al-Onazi, M.H. Ali, Synthesis and characterization of cerium oxide hybrid with chitosan nanoparticles for enhancing the photodegradation of Congo Red dye. J. Mater. Sci. Mater. Electron. 32(9), 12017–12030 (2021)

    Article  CAS  Google Scholar 

  15. Y. Gao et al., Cerium oxide nanoparticles in cancer. Onco. Targets. Ther. 7, 835 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. J. Jhaveri et al., Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules 26(2), 272 (2021)

    Article  PubMed Central  CAS  Google Scholar 

  17. F. Wang et al., Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. J. Biomater. Appl. 31(1), 3–12 (2016)

    Article  PubMed  CAS  Google Scholar 

  18. M. İlgar, S. Karakuş, A. Kilislioğlu, Design, characterization and evaluation of the drug-loaded chitosan/cerium oxide nanoparticles with pH-controlled drug release. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03839-y

    Article  Google Scholar 

  19. N. Abbasi et al., Cerium oxide nanoparticles-loaded on chitosan for the investigation of anticancer properties. Mater. Technol. (2021). https://doi.org/10.1080/10667857.2021.1954279

    Article  Google Scholar 

  20. M. Ashna et al., Greener synthesis of cerium oxide nanoemulsion using pollen grains of Brassica napus and evaluation of its antitumour and cytotoxicity properties. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1863558

    Article  Google Scholar 

  21. R. Mahdizadeh et al., Green synthesized-zinc oxide nanoparticles, the strong apoptosis inducer as an exclusive antitumor agent in murine breast tumor model and human breast cancer cell lines (MCF7). J. Cell. Biochem. 120(10), 17984–17993 (2019)

    Article  PubMed  CAS  Google Scholar 

  22. M. Soltani et al., Incorporation of Boswellia sacra essential oil into chitosan/TPP nanoparticles towards improved therapeutic efficiency. Mater. Technol. (2021). https://doi.org/10.1080/10667857.2021.1976364

    Article  Google Scholar 

  23. N. Khatamian et al., Pinus morrisonicola needles essential oil nanoemulsions as a novel strong antioxidant and anticancer agent. Inorg. Nano-Met. Chem. (2021). https://doi.org/10.1080/24701556.2021.1892760

    Article  Google Scholar 

  24. M. AbdElhady, Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int. J. Carbohydr. Chem. (2012). https://doi.org/10.1155/2012/840591

    Article  Google Scholar 

  25. T.T.V. Phan et al., Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications. Nanomaterials 11(2), 273 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. J.K. Patra et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol 16(1), 1–33 (2018)

    Article  CAS  Google Scholar 

  27. J.E. Lemaster, J.V. Jokerst, What is new in nanoparticle-based photoacoustic imaging? Wiley Interdiscip Rev. 9(1), e1404 (2017)

    Google Scholar 

  28. S. Bharathiraja et al., Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci. Rep. 8(1), 1–16 (2018)

    Article  CAS  Google Scholar 

  29. U. Ndagi, N. Mhlongo, M.E. Soliman, Metal complexes in cancer therapy–an update from drug design perspective. Drug Des. Dev. Ther. 11, 599 (2017)

    Article  CAS  Google Scholar 

  30. T.T.V. Phan, Q.V. Nguyen, T.-C. Huynh, Simple, green, and low-temperature method for preparation of palladium nanoparticles with controllable sizes and their characterizations. J. Nanopart. Res. 22(3), 1–11 (2020)

    Article  CAS  Google Scholar 

  31. S. Loganathan et al., Metal oxide nanoparticle synthesis (ZnO-NPs) of Knoxia sumatrensis (Retz.) DC. Aqueous leaf extract and It’s evaluation of their antioxidant, anti-proliferative and larvicidal activities. Toxicol. Rep. 8, 64–72 (2021)

    Article  PubMed  CAS  Google Scholar 

  32. S. AseydNezhad, A. Es-haghi, M.H. Tabrizi, Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl. Organomet. Chem. 34(2), e5314 (2020)

    CAS  Google Scholar 

  33. M. Nadeem et al., Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. Int. J. Nanomed. 15, 5951 (2020)

    Article  CAS  Google Scholar 

  34. R. Javed et al., Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnol. 18(1), 1–15 (2020)

    Article  Google Scholar 

  35. R. Senthilkumar et al., Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: as a bionanomaterials. Int. J. Biol. Macromol. 104, 1746–1752 (2017)

    Article  PubMed  CAS  Google Scholar 

  36. S. Mohammadi-Samani et al., Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate. Res. Pharmaceut. Sci. 8(1), 25 (2013)

    CAS  Google Scholar 

  37. A. Limayem et al., A streamlined study on chitosan-zinc oxide nanomicelle properties to mitigate a drug-resistant biofilm protection mechanism. Front. Nanotechnol. 2, 16 (2020)

    Article  Google Scholar 

  38. A. Arumugam et al., Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C 49, 408–415 (2015)

    Article  CAS  Google Scholar 

  39. H.E. Ahmed et al., Green synthesis of CeO2 Nanoparticles from the Abelmoschus esculentus extract: evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules 26(15), 4659 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Y. Xiao et al., Synthesis and adsorption behavior of chitosan-coated MnFe2O4 nanoparticles for trace heavy metal ions removal. Appl Surf Sci 285, 498–504 (2013)

    Article  CAS  Google Scholar 

  41. H. Hassannejad, A. Nouri, Synthesis and evaluation of self-healing cerium-doped chitosan nanocomposite coatings on AA5083-H321. Int J Electrochem Sci 11, 2106–2118 (2016)

    CAS  Google Scholar 

  42. D. Wei et al., The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohyd. Res. 344(17), 2375–2382 (2009)

    Article  CAS  Google Scholar 

  43. H. Wu, J. Zhang, Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: a physicochemical and biological perspective. Saudi Pharmaceut. J. 26(2), 205–210 (2018)

    Article  Google Scholar 

  44. T. Ramasamy et al., Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharm. Res. 31(5), 1302–1314 (2014)

    Article  PubMed  CAS  Google Scholar 

  45. T. Ramasamy et al., Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater. 10(12), 5116–5127 (2014)

    Article  PubMed  CAS  Google Scholar 

  46. I. Celardo et al., Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4), 1411–1420 (2011)

    Article  PubMed  CAS  Google Scholar 

  47. L. Alili et al., Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid. Redox Signal. 19(8), 765–778 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Y. Zheng et al., Preparation of chitosan–copper complexes and their antitumor activity. Bioorg. Med. Chem. Lett. 16(15), 4127–4129 (2006)

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Karimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermani, G., Karimi, E. & Tabrizi, M.H. Hybrid Nanoarchitectonics of Chitosan-Cerium Oxide Nanoparticles for Anticancer Potentials. J Inorg Organomet Polym 32, 2591–2599 (2022). https://doi.org/10.1007/s10904-022-02329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02329-6

Keywords

Navigation