Skip to main content
Log in

Hybrid Nanocomposites of Hydroxyapatite, Eu2O3, Graphene Oxide Via Ultrasonic Power: Microstructure, Morphology Design and Antibacterial for Biomedical Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Post-implantation infections are regarded as a major issue in the biomedical field. Further, many investigations are continuous towards developing antibacterial biocompatible materials. In this regard, hydroxyapatite (HAP), erbium oxide (Eu2O3), and graphene oxide (GO) were introduced in nanocomposites combinations, including single, dual, and triple constituents. The nanoparticles of HAP, Eu2O3, and nanosheets of GO are synthesized separately, while dispersed in the nanocomposites simultaneously. The morphological investigation showed that HAP was configured in a rod-like shape while the nano ellipsoidal shape of Eu2O3 was confirmed. The particle size of the ternary nanocomposite containing HAP/Eu2O3/GO reached the length of 40 nm for the rods of HAP and around 28 nm for the length axis of ellipsoidal Eu2O3 nanoparticles. The roughness average increased to be about 54.7 nm for HAP/GO and decreased to 37.9 nm for the ternary nanocomposite. Furthermore, the maximum valley depth (Rv) increased from HAP to the ternary nanocomposite from 188.9 to 189.8 nm. Moreover, the antibacterial activity was measured, whereas the inhibition zone of HAP/Eu2O3/GO reached 13.2 ± 1.1 mm for Escherichia coli and 11.4 ± 0.8 mm for Staphylococcus aureus. The cell viability of the human osteoblast cell lines was evaluated to be 98.5 ± 3% for the ternary composition from 96.8 ± 4% for the pure HAP. The existence of antibacterial activity without showing cytotoxicity against mammalian cells indicates the compatibility of nanocomposites with biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.S. Ambekar, B. Kandasubramanian, Advancements in nanofibers for wound dressing: a review. Eur. Polym. J. 117, 304–336 (2019)

    Article  CAS  Google Scholar 

  2. M.F.H.A. El-Kader, M.K. Ahmed, M.T. Elabbasy, M. Afifi, A.A. Menazea, Morphological, ultrasonic mechanical and biological properties of hydroxyapatite layers deposited by pulsed laser deposition on alumina substrates. Surf. Coat. Technol. 409, 126861 (2021). https://doi.org/10.1016/j.surfcoat.2021.126861

    Article  CAS  Google Scholar 

  3. V. Ponnilavan, S. Vasanthavel, R.K. Singh, S. Kannan, Influence of La3+ additions on the phase behaviour and antibacterial properties of ZrO2–SiO2 binary oxides. Ceram. Int. 41, 7632–7639 (2015)

    Article  CAS  Google Scholar 

  4. N.H. de Leeuw, Local ordering of hydroxy groups in hydroxyapatite. Chem Commun (2001). https://doi.org/10.1039/b104850n

    Article  Google Scholar 

  5. O. Kaygili, C. Tatar, F. Yakuphanoglu, S. Keser, Nano-crystalline aluminum-containing hydroxyapatite based bioceramics: synthesis and characterization. J. Sol-Gel. Sci. Technol. 65, 105–111 (2012)

    Article  CAS  Google Scholar 

  6. L. Wang, H. He, Y. Yu, L. Sun, S. Liu, C. Zhang et al., Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J. Inorg. Biochem. 135, 45–53 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. M.K. Ahmed, S.F. Mansour, R. Al-Wafi, M. Afifi, V. Uskokovic, Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous epsilon-polycaprolactone scaffolds for tissue engineering. Int. J. Pharm. 577, 118950 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. F. Mohandes, M. Salavati-Niasari, In vitro comparative study of pure hydroxyapatite nanorods and novel polyethylene glycol/graphene oxide/hydroxyapatite nanocomposite. J. Nanopart. Res. (2014). https://doi.org/10.1007/s11051-014-2604-y

    Article  Google Scholar 

  9. L.A. Zavala-Sanchez, G.A. Hirata, E. Novitskaya, K. Karandikar, M. Herrera, O.A. Graeve, Distribution of Eu(2+) and Eu(3+) ions in hydroxyapatite: a cathodoluminescence and raman study. ACS Biomater. Sci. Eng. 1, 1306–1313 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. S.-L. Iconaru, M. Motelica-Heino, D. Predoi, Study on Europium-doped hydroxyapatite nanoparticles by fourier transform infrared spectroscopy and their antimicrobial properties. J. Spectrosc. (2013). https://doi.org/10.1155/2013/284285

    Article  Google Scholar 

  11. V. Uskokovic, M.A. Iyer, V.M. Wu, One ion to rule them all: combined antibacterial, osteoinductive and anticancer properties of selenite-incorporated hydroxyapatite. J. Mater. Chem. B 5, 1430–1445 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C. Popa, C. Ciobanu, S. Iconaru, M. Stan, A. Dinischiotu, C. Negrila et al., Systematic investigation and in vitro biocompatibility studies on mesoporous europium doped hydroxyapatite. Open Chem. 12, 1032–1046 (2014)

    Article  CAS  Google Scholar 

  13. M.G. Raucci, D. Giugliano, A. Longo, S. Zeppetelli, G. Carotenuto, L. Ambrosio, Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. J. Tissue Eng. Regen. Med. 11, 2204–2216 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. T.A.R.M. Lima, M.E.G. Valerio, X-ray absorption fine structure spectroscopy and photoluminescence study of multifunctional europium (III)-doped hydroxyapatite in the presence of cationic surfactant medium. J. Lumin. 201, 70–76 (2018)

    Article  CAS  Google Scholar 

  15. J.R. Vail, D.L. Burris, W.G. Sawyer, Multifunctionality of single-walled carbon nanotube–polytetrafluoroethylene nanocomposites. Wear 267, 619–624 (2009)

    Article  CAS  Google Scholar 

  16. T. Kataoka, S. Abe, M. Tagaya, Surface-engineered design of efficient luminescent europium(III) complex-based hydroxyapatite nanocrystals for rapid hela cancer cell imaging. ACS Appl. Mater. Interfaces 11, 8915–8927 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. S. Chaudhary, P. Sharma, S. Kumar, S.A. Alex, R. Kumar, S.K. Mehta et al., A comparative multi-assay approach to study the toxicity behaviour of Eu2O3 nanoparticles. J. Mol. Liq. 269, 783–795 (2018)

    Article  CAS  Google Scholar 

  18. K. Kattel, J.Y. Park, W. Xu, H.G. Kim, E.J. Lee, B.A. Bony et al., Water-soluble ultrasmall Eu2O3 nanoparticles as a fluorescent imaging agent: In vitro and in vivo studies. Colloids Surf. A 394, 85–91 (2012)

    Article  CAS  Google Scholar 

  19. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach et al., Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. M. Li, Q. Liu, Z. Jia, X. Xu, Y. Cheng, Y. Zheng et al., Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67, 185–197 (2014)

    Article  CAS  Google Scholar 

  21. H. Nosrati, R.S. Mamoory, D.Q.S. Le, C.E. Bünger, Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface. Diamond Related Mater. 100, 107561 (2019)

    Article  CAS  Google Scholar 

  22. L. Feng, Y. Chen, J. Ren, X. Qu, A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32, 2930–2937 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. C. Wan, M. Frydrych, B. Chen, Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter 7, 6159 (2011)

    Article  CAS  Google Scholar 

  24. J.H. Lee, Y.C. Shin, S.M. Lee, O.S. Jin, S.H. Kang, S.W. Hong et al., Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci. Rep. 5, 18833 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Lahiri, A.P. Benaduce, L. Kos, A. Agarwal, Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique. Nanotechnology 22, 355703 (2011)

    Article  PubMed  CAS  Google Scholar 

  26. M. Afifi, M.K. Ahmed, H.A. Ibrahium, N.S. Awwad, E. Abdel-Fattah, M.Y. Alshahrani, Improvement of physicochemical properties of ternary nanocomposites based on hydroxyapatite/CuO/graphene oxide for biomedical usages. Ceram. Int. 48(3), 3993–4004 (2022). https://doi.org/10.1016/j.ceramint.2021.10.186

    Article  CAS  Google Scholar 

  27. Z. Mo, Y. Zhao, R. Guo, P. Liu, T. Xie, Preparation and characterization of graphene/europium oxide composites. Mater. Manuf. Processes 27, 494–498 (2011)

    Article  CAS  Google Scholar 

  28. Y. Li, Z. Li, X. Zhou, P. Yang, Detection of nano Eu2O3 in cells and study of its biological effects. Nano Biomed. Eng. (2010). https://doi.org/10.5101/nbe.v2i1.p24-30

    Article  Google Scholar 

  29. M.K. Ahmed, R. Ramadan, M. Afifi, A.A. Menazea, Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. J. Market. Res. 9, 8854–8866 (2020)

    CAS  Google Scholar 

  30. M.K. Ahmed, M. Afifi, M.S. Mostafa, A.F. El-kott, H.A. Ibrahium, N.S. Awwad, Crystal structure optimization, ultrasonic properties and morphology of Mg/Se co-dopant into annealed hydroxyapatite for biomedical applications. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00148-y

    Article  PubMed  Google Scholar 

  31. Z. Liu, J. Tian, C. Yu, Q. Fan, X. Liu, K. Yang et al., Ultrasonic fabrication of SO42—doped g-C3N4/Ag3PO4 composite applied for effective removal of dyestuffs and antibiotics. Mater. Chem. Phys. 240, 122206 (2020)

    Article  CAS  Google Scholar 

  32. S. Sivaselvam, P. Premasudha, C. Viswanathan, N. Ponpandian, Enhanced removal of emerging pharmaceutical contaminant ciprofloxacin and pathogen inactivation using morphologically tuned MgO nanostructures. J. Environ. Chem. Eng. 8, 104256 (2020)

    Article  CAS  Google Scholar 

  33. M. Ramadas, G. Bharath, N. Ponpandian, A.M. Ballamurugan, Investigation on biophysical properties of hydroxyapatite/graphene oxide (HAp/GO) based binary nanocomposite for biomedical applications. Mater. Chem. Phys. 199, 179–184 (2017)

    Article  CAS  Google Scholar 

  34. G. Xiong, H. Luo, G. Zuo, K. Ren, Y. Wan, Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications. Mater. Charact. 107, 419–425 (2015)

    Article  CAS  Google Scholar 

  35. M.K. Ahmed, M.E. El-Naggar, A. Aldalbahi, M.H. El-Newehy, A.A. Menazea, Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J. Mol. Liq. 315, 113794 (2020)

    Article  CAS  Google Scholar 

  36. S.F. Mansour, S.I. El-dek, M. Ismail, M.K. Ahmed, Structure and cell viability of Pd substituted hydroxyapatite nano particles. Biomed. Phys. Eng. Express 4, 045008 (2018)

    Article  Google Scholar 

  37. M.F. Abdelbar, H.S. El-Sheshtawy, K.R. Shoueir, I. El-Mehasseb, M. Ebeid E-Zeiny, M. El-Kemary, Halogen bond triggered aggregation induced emission in an iodinated cyanine dye for ultra sensitive detection of Ag nanoparticles in tap water and agricultural wastewater. RSC Adv. 8, 24617–24626 (2018)

    Article  CAS  Google Scholar 

  38. M.A. Zakria, A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol. Surf. Interfaces (2020). https://doi.org/10.1016/j.surfin.2020.100438

    Article  Google Scholar 

  39. C.S. Ciobanu, S.L. Iconaru, F. Massuyeau, L.V. Constantin, A. Costescu, D. Predoi, Synthesis, structure, and luminescent properties of europium-doped hydroxyapatite nanocrystalline powders. J. Nanomater. (2012). https://doi.org/10.1155/2012/942801

    Article  Google Scholar 

  40. S. Rahavi, A. Monshi, R. Emadi, A. Doostmohammadi, H. Akbarian, Determination of crystallite size in synthetic and natural hydroxyapatite: a comparison between XRD and TEM results. Adv. Mater. Res. 620, 28–34 (2012)

    Article  CAS  Google Scholar 

  41. B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Magnesium incorporated hydroxyapatite nanoparticles: Preparation, characterization, antibacterial and larvicidal activity. Arab. J. Chem. 11, 645–654 (2018)

    Article  CAS  Google Scholar 

  42. U. Rajaji, S. Manavalan, S.M. Chen, S. Chinnapaiyan, T.W. Chen, R.R. Jothi, Facile synthesis and characterization of erbium oxide (Er2O3) nanospheres embellished on reduced graphene oxide nanomatrix for trace-level detection of a hazardous pollutant causing Methemoglobinaemia. Ultrason. Sonochem. 56, 422–429 (2019)

    Article  PubMed  CAS  Google Scholar 

  43. M.J. Lukić, L. Veselinović, M. Stevanović, J. Nunić, G. Dražič, S. Marković et al., Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Mater. Lett. 122, 296–300 (2014)

    Article  CAS  Google Scholar 

  44. S. Hiromoto, M. Inoue, T. Taguchi, M. Yamane, N. Ohtsu, In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater. 11, 520–530 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. A. Janković, S. Eraković, M. Mitrić, I.Z. Matić, Z.D. Juranić, G.C.P. Tsui et al., Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J. Alloys Compd. 624, 148–157 (2015)

    Article  CAS  Google Scholar 

  46. M.K. Ahmed, R. Ramadan, S.I. El-dek, V. Uskoković, Complex relationship between alumina and selenium-doped carbonated hydroxyapatite as the ceramic additives to electrospun polycaprolactone scaffolds for tissue engineering applications. J. Alloys Compd. 801, 70–81 (2019)

    Article  CAS  Google Scholar 

  47. O. Kaygili, S. Keser, N. Bulut, T. Ates, Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B 537, 63–67 (2018)

    Article  CAS  Google Scholar 

  48. D. Gopi, D. Rajeswari, S. Ramya, M. Sekar, R.D. Pramod, J. Dwivedi et al., Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel. Appl. Surf. Sci. 286, 83–90 (2013)

    Article  CAS  Google Scholar 

  49. K. Lin, Y. Zhou, Y. Zhou, H. Qu, F. Chen, Y. Zhu et al., Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: surfactant-free hydrothermal synthesis, enhanced degradation and drug release. J. Mater. Chem. 21, 16558 (2011)

    Article  CAS  Google Scholar 

  50. S.F. Mansour, S.I. El-Dek, M.K. Ahmed, Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7, 43202 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. V.K. Mishra, B.N. Bhattacharjee, O. Parkash, D. Kumar, S.B. Rai, Mg-doped hydroxyapatite nanoplates for biomedical applications: a surfactant assisted microwave synthesis and spectroscopic investigations. J. Alloys Compd. 614, 283–288 (2014)

    Article  CAS  Google Scholar 

  52. A. Menazea, S.A. Abdelbadie, M. Ahmed, Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Appl. Surf. Sci. 508, 145299 (2020)

    Article  CAS  Google Scholar 

  53. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011)

    Article  CAS  PubMed  Google Scholar 

  54. K. Kaviyarasu, K. Kanimozhi, N. Matinise, C. Maria Magdalane, G.T. Mola, J. Kennedy et al., Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: Investigation of bio-electronic application. Mater. Sci. Eng. C 76, 1012–1025 (2017)

    Article  CAS  Google Scholar 

  55. M. Wang, Y. Liu, G. Ren, W. Wang, S. Wu, J. Shen, Bioinspired carbon quantum dots for sensitive fluorescent detection of vitamin B12 in cell system. Anal. Chim. Acta 1032, 154–162 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. S. Kumar, R. Prakash, R.J. Choudhary, D.M. Phase, Structural, XPS and magnetic studies of pulsed laser deposited Fe doped Eu2O3 thin film. Mater. Res. Bull. 70, 392–396 (2015)

    Article  CAS  Google Scholar 

  57. H.H. Huang, C.T. Ho, T.H. Lee, T.L. Lee, K.K. Liao, F.L. Chen, Effect of surface roughness of ground titanium on initial cell adhesion. Biomol. Eng. 21, 93–97 (2004)

    Article  CAS  PubMed  Google Scholar 

  58. I.M. Hung, W.J. Shih, M.H. Hon, M.C. Wang, The properties of sintered calcium phosphate with [Ca]/[P] = 1.50. Int. J. Mol. Sci. 13, 13569–13586 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Toloei, V. Stoilov, D. Northwood, The relationship between surface roughness and corrosion, in Proceedings of the ASME 2013 international mechanical engineering congress and exposition. Advanced manufacturing, vol. 2B, (2014)

  60. M.S. Johnsson, G.H. Nancollas, The role of brushite and octacalcium phosphate in apatite formation. Crit. Rev.Oral Biol. Med 3, 61–82 (1992)

    Article  CAS  PubMed  Google Scholar 

  61. A. Carino, C. Ludwig, A. Cervellino, E. Müller, A. Testino, Formation and transformation of calcium phosphate phases under biologically relevant conditions: experiments and modelling. Acta Biomater. 74, 478–488 (2018)

    Article  CAS  PubMed  Google Scholar 

  62. S. Sompech, A. Srion, A. Nuntiya, The effect of ultrasonic treatment on the particle size and specific surface area of LaCoO3. Procedia Eng. 32, 1012–1018 (2012)

    Article  CAS  Google Scholar 

  63. K. Kaviyarasu, A. Mariappan, K. Neyvasagam, A. Ayeshamariam, P. Pandi, R.R. Palanichamy et al., Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method. Surf. Interfaces 6, 247–255 (2017)

    Article  CAS  Google Scholar 

  64. S. Liu, M. Hu, T.H. Zeng, R. Wu, R. Jiang, J. Wei et al., Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28, 12364–12372 (2012)

    Article  CAS  PubMed  Google Scholar 

  65. K. Krishnamoorthy, M. Veerapandian, L.-H. Zhang, K. Yun, S.J. Kim, Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 116, 17280–17287 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Deputyship for Research and Innovation, Minsitry of education in Saudi Arabia for funding this research work through the project number : IFP-KKU-2020/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ahmed.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.K., Awwad, N.S., Ibrahium, H.A. et al. Hybrid Nanocomposites of Hydroxyapatite, Eu2O3, Graphene Oxide Via Ultrasonic Power: Microstructure, Morphology Design and Antibacterial for Biomedical Applications. J Inorg Organomet Polym 32, 1786–1799 (2022). https://doi.org/10.1007/s10904-022-02279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02279-z

Keywords

Navigation