Skip to main content

Advertisement

Log in

Enhanced Catalytic, Antibacterial and Anti-cancer Activities of Erythromycin Capped Gold Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, the nanosized spherical erythromycin capped gold nanoparticles (eryth-Au(0)NPs) were fabricated for the first time. After that, multiple techniques such as UV-Visible, FTIR, HR-TEM, and XRD were used to examine the Au(0)NPs. Finally, these eryth-Au(0)NPs were employed for a wide range of applications, such as catalysis, antibacterial, and anticancer activities. The eryth-Au(0)NPs had shown remarkable catalytic activity as a catalyst in the ∼99% fragmentation of ibuprofen and paracetamol in one minute. They were also easily recovered from the reaction mixture and were reused seven times with increased catalytic potential. The excellent antimicrobial properties of Staphylococcus aureus (S. aureus) and Salmonella typhi (S. typhi) were also revealed using the well diffusion method. In addition, TLR expression levels in SKBR3 cells were measured using qReal-time PCR (qRT-PCR). TLR3 expression was upregulated in the SKBR3 breast cancer cell line, while TLR2, TLR4, TLR5, and TLR9 expression was downregulated. Furthermore, the simultaneous overexpression of p53 and downregulation of NF-kB demonstrated anticancer efficacy in breast cancer cells. The recent advancements can also be used to protect the aquatic environment from drugs toxicity in wastewater and antimicrobial and anticancer activities using a simple, cost-effective, fast, and efficient reduction/degradation technique based on the catalytic potential of eryth-Au(0)NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Bafekry, M. Faraji, M.M. Fadlallah, I. Abdolhosseini Sarsari, H.R. Jappor, S. Fazeli, M. Ghergherehchi, Two-dimensional porous graphitic carbon nitride C6N7 monolayer: first-principles calculations. Appl. Phys. Lett. 119(14), 142102 (2021)

    Article  CAS  Google Scholar 

  2. A. Bafekry, M. Faraji, N.N. Hieu, Y.S. Ang, S. Karbasizadeh, I.A. Sarsari, M. Ghergherehchi, Two-dimensional Dirac half-metal in porous carbon nitride C6N7 monolayer via atomic doping. Nanotechnology 33(7), 075707 (2021)

    Article  Google Scholar 

  3. S.M. Ciborowski, R.M. Harris, G. Liu, C.J. Martinez-Martinez, P. Skurski, K.H. Bowen Jr., The correlation-bound anion of p-chloroaniline. J. Chem. Phys. 150(16), 161103 (2019)

    Article  Google Scholar 

  4. M. Bhagat, R. Anand, R. Datt, V. Gupta, S. Arya, Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J. Inorg. Organomet. Polym Mater. 29(3), 1039–1047 (2019)

    Article  CAS  Google Scholar 

  5. M. Bhagat, S. Rajput, S. Arya, S. Khan, P. Lehana, Biological and electrical properties of biosynthesized silver nanoparticles. Bull. Mater. Sci. 38(5), 1253–1258 (2015)

    Article  CAS  Google Scholar 

  6. S.B. Rana, R.P.P. Singh, S. Arya, Structural, optical, magnetic and antibacterial study of pure and cobalt doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 28(3), 2660–2672 (2017)

    CAS  Google Scholar 

  7. H. Rumgay, K. Shield, H. Charvat, P. Ferrari, B. Sornpaisarn, I. Obot, F. Islami, V.E. Lemmens, J. Rehm, I. Soerjomataram, Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 22(8), 1071–1080 (2021)

    Article  Google Scholar 

  8. M.Z. Salem, E.H. Mervat, H.M. Ali, A. Abdel-Megeed, A.A. El-Settawy, M. Böhm, M.M. Mansour, A.Z. Salem, Forest-derived bioactives: novel utilization as antimicrobial, antioxidant and phytoreducing agents for the biosynthesis of metallic nanoparticles. Microb. Pathog. 105, 107 (2021)

    Google Scholar 

  9. W. Xie, O. Yan, F. Liu, Y. Han, H. Wang, Prognostic value of survivin in nasopharyngeal carcinoma: a systematic review and meta-analysis. J. Cancer 12(14), 4399 (2021)

    Article  Google Scholar 

  10. A.S. Cordeiro, Y. Farsakoglu, J. Crecente-Campo et al., Carboxymethyl-β-glucan/chitosan nanoparticles: new thermostable and efficient carriers for antigen delivery. Drug Deliv. Transl. Res. 11(4), 1689–1702 (2021). https://doi.org/10.1007/s13346-021-00968-9

    Article  CAS  PubMed  Google Scholar 

  11. G.P. Amarante-Mendes, S. Adjemian, L.M. Branco, L.C. Zanetti, R. Weinlich, K.R. Bortoluci, Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 9, 2379 (2018). https://doi.org/10.3389/fimmu.2018.02379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Liu, L. Zhang, D. Joo, S.C. Sun, NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023 (2017). https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  13. T. Kawasaki, T. Kawai, Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014). https://doi.org/10.3389/fimmu.2014.00461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Z. Urban-Wojciuk, M.M. Khan, B.L. Oyler, R. Fåhraeus, N. Marek-Trzonkowska, A. Nita-Lazar, T.R. Hupp, D.R. Goodlett, The role of TLRs in anti-cancer immunity and tumor rejection. Front. Immunol. 10, 2388 (2019). https://doi.org/10.3389/fimmu.2019.02388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Keshavarz, A. Pourbagheri-Sigaroodi, P. Zafari, N. Bagheri, S.H. Ghaffari, D. Bashash, Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists. IUBMB Life 73(1), 10–25 (2021)

    Article  CAS  Google Scholar 

  16. G. González-Rubio, Á. Sellers-Moya, H. Martín, M. Molina, A walk-through MAPK structure and functionality with the 30-year-old yeast MAPK Slt2. Int. Microbiol. 15, 1–3 (2021)

    Google Scholar 

  17. W. Wang, S.A. Nag, R. Zhang, Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem. 22(2), 264–289 (2015). https://doi.org/10.2174/0929867321666141106124315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T.D. Gilmore, NF-κB and human cancer: what have we learned over the past 35 years? Biomedicines 9(8), 889 (2021)

    Article  CAS  Google Scholar 

  19. M. Safdar, M. Ozaslan, R.A. Khailany et al., Synthesis, characterization and applications of a novel platinum-based nanoparticles: catalytic, antibacterial and cytotoxic studies. J. Inorg. Organomet. Polym. 30, 2430–2439 (2020). https://doi.org/10.1007/s10904-019-01387-7

    Article  CAS  Google Scholar 

  20. M. Safdar, M. Ozaslan, Y. Junejo et al., Cytotoxic and anticancer activity of a novel synthesized tet-AuNPs simultaneously activates p53 and inhibits NF-kB signaling in SKBR3 cell line. Toxicol. Environ. Health Sci. (2021). https://doi.org/10.1007/s13530-021-00118-1

    Article  Google Scholar 

  21. M. Safdar, M. Ozaslan, Y. Junejo, Synthesis, characterization and employed doxycycline capped gold nanoparticles on TRP channel expressions in SKBR3 breast cancer cells and antimicrobial activity. J. Clust. Sci. (2021). https://doi.org/10.1007/s10876-021-02181-7

    Article  Google Scholar 

  22. Y. Junejo, A. Baykal, Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles. Turk. J. Chem. 38(5), 765–774 (2014)

    Article  CAS  Google Scholar 

  23. N.H. Kalwar, R.A. Soomro, S.T.H. Sherazi, K.R. Hallam, A.R. Khaskheli, Synthesis and characterization of highly efficient nickel nanocatalysts and their use in degradation of organic dyes. Int. J. Metals 2014, 1–10 (2014)

    Article  Google Scholar 

  24. T.T. Vo, C.H. Dang, V.D. Doan et al., Biogenic synthesis of silver and gold nanoparticles from Lactuca indica leaf extract and their application in catalytic degradation of toxic compounds. J. Inorg. Organomet. Polym. 30, 388–399 (2020). https://doi.org/10.1007/s10904-019-01197-x

    Article  CAS  Google Scholar 

  25. K. Sneha, M. Sathishkumar, S. Kim, Y.S. Yun, Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Process Biochem. 45, 1450–1458 (2010)

    Article  CAS  Google Scholar 

  26. A.M. Abd-Elnaiem, R.F. Abd El-Baki, F. Alsaaq et al., Composite Nanoarchitectonics of Graphene Oxide for Better Understanding on Structural Effects on Photocatalytic Performance for Methylene Blue Dye. J. Inorg. Organomet. Polym. (2021). https://doi.org/10.1007/s10904-021-02146-3

    Article  Google Scholar 

  27. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)

    Article  CAS  Google Scholar 

  28. Z. Sun, Y. Chen, Q. Ke, Y. Yang, J. Yuan, Photocata lytic degradation of a cationic azo dye by tio2/bentonite nanocomposite. J. Photochem. Photobiol. A 149, 169–174 (2002)

    Article  CAS  Google Scholar 

  29. Y. Junejo, M. Safdar, M.A. Akhtar et al., Synthesis of tobramycin stabilized silver nanoparticles and its catalytic and antibacterial activity against pathogenic bacteria. J. Inorg. Organomet. Polym. 29, 111–120 (2019). https://doi.org/10.1007/s10904-018-0971-z

    Article  CAS  Google Scholar 

  30. R. Mitarotonda, M. Saraceno, M. Todone, E. Giorgi, E.L. Malchiodi, M.F. Desimone, M.C. De Marzi, Surface chemistry modification of silica nanoparticles alters the activation of monocytes. Ther. Deliv. 12(6), 443–459 (2021)

    Article  CAS  Google Scholar 

  31. D. Sahu, G.M. Kannan, R. Vijayaraghavan, Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. J. Toxicol. Environ. Health Part A. 77, 177–191 (2014). https://doi.org/10.1080/15287394.2013.853224

    Article  CAS  Google Scholar 

  32. G. Trinchieri, A. Sher, Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007). https://doi.org/10.1038/nri2038

    Article  CAS  PubMed  Google Scholar 

  33. T. Kawai, S. Akira, The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 11, 373–384 (2010). https://doi.org/10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  34. U.M. Smith, J.K. Simon, J.R. Baker Jr., Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13, 592–605 (2013). https://doi.org/10.1038/nri3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Lucarelli, A.M. Gatti, G. Savarino, P. Quattroni, L. Martinelli, E. Monari, D. Boraschi, Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur. Cytokine Netw. 15, 339–346 (2004)

    CAS  PubMed  Google Scholar 

  36. Y. Zhao, S. Liu, Y. Tang, T. You, H. Xu, Lactobacillus rhamnosus GG ameliorated long-term exposure to TiO2 nanoparticles induced microbiota-mediated liver and colon inflammation and fructose-caused metabolic abnormality in metabolism syndrome mice. J. Agric. Food Chem. 69(34), 9788–9799 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and thanks Gaziantep University for logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Safdar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdar, M., Ozaslan, M. Enhanced Catalytic, Antibacterial and Anti-cancer Activities of Erythromycin Capped Gold Nanoparticles. J Inorg Organomet Polym 32, 1819–1827 (2022). https://doi.org/10.1007/s10904-022-02239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02239-7

Keywords

Navigation