Skip to main content
Log in

Slow-Release of Curcumin Induced by Core–Shell Mesoporous Silica Nanoparticles (MSNs) Modified MIL-100(Fe) Composite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

As a biocompatible porous material, bio-MOF is a very promising material as a carrier for hydrophobic drugs, including curcumin. However, the stability of bio-MOF against water and humidity still needs to be improved; therefore, surface modifications are required. This study aims to modify the MIL-100(Fe)-based bio-MOF through core–shell architecture by employing mesoporous silica nanoparticles (MSNs or SiO2) for improving the stability and performance of MIL-100(Fe) to provide a slow-release feature of curcumin. The composites were synthesized via sonochemistry-assisted or mechanochemistry-assisted green protocol to form core–shell structure of MIL-100(Fe)@SiO2 (Composite-1) or SiO2@MIL-100(Fe) (Composite-2). Structural, textural, and morphological analyses, including XRD, FTIR, SEM, TEM, and N2 adsorption–desorption, are discussed in this study to evaluate the composite formation. BET surface area of the MIL-100(Fe) decreased from 1197.45 m2/g to 565.63 and 823.70 m2/g after forming composite-1 and composite-2 with SiO2. The loading capacity, however, just increased slightly up to 97.89% after the modification. The presence of SiO2 as shell (composite-1) protects the MIL-100(Fe) from degradation under the acidic condition at pH 5.8 and can maintain the slow-release of curcumin. In contrast, the presence of SiO2 as core (composite-2) induces the sustained release due to faster degradation of MIL-100(Fe) in acidic condition. Both composites serve as a model for either sustained release or delayed release drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. W. Liu, J. Yuan, H. Zhu, X. Zhang, L. Li, X. Liao, Z. Wen, Y. Chen, H. Feng, J. Lin, Neurosci. Lett. 620, 74 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. S. Abrahams, W.L. Haylett, G. Johnson, J.A. Carr, S. Bardien, Neuroscience 406, 1 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. R. Jin, Y. Xia, Q. Chen, W. Li, D. Chen, H. Ye, C. Zhao, X. Du, D. Shi, J. Wu, G. Liang, Drug Des. Devel. Ther. 10, 979 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. O. Naksuriya, S. Okonogi, R.M. Schiffelers, W.E. Hennink, Biomaterials 35, 3365 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. S. Taverna, S. Fontana, F. Monteleone, M. Pucci, L. Saieva, V. De Caro, V.G. Cardinale, M. Giallombardo, E. Vicario, C. Rolfo, G. De Leo, R. Alessandro, Oncotarget 7, 30420 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  6. S. Wanninger, V. Lorenz, A. Subhan, F.T. Edelmann, Chem. Soc. Rev. 44, 4986 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. W. Park, A.R.M. Ruhul Amin, Z.G. Chen, D.M. Shin, Cancer Prev. Res. 6, 387 (2013)

    Article  CAS  Google Scholar 

  8. X.M. Zhu, J. Yuan, K.C.F. Leung, S.F. Lee, K.W.Y. Sham, C.H.K. Cheng, D.W.T. Au, G.J. Teng, A.T. Ahuja, Y.X.J. Wang, Nanoscale 4, 5744 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. S. Bisht, G. Feldmann, S. Soni, R. Ravi, C. Karikar, A. Maitra, A. Maitra, J. Nanobiotechnol. 5, 1 (2007)

    Article  CAS  Google Scholar 

  10. Z. Wang, M.H.M. Leung, T.W. Kee, D.S. English, Langmuir 26, 5520 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. D. Psimadas, P. Georgoulias, V. Valotassiou, G. Loudos, J. Pharm. Sci. 101, 2271 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. M.X. Wu, Y.W. Yang, Adv. Mater. 29, 1 (2017)

    CAS  Google Scholar 

  13. M.A. Adahoun, M.A.H. Al-Akhras, M.S. Jaafar, M. Bououdina, Artif. Cells Nanomed. Biotechnol. 45, 98 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Zhang, L. Wang, L. Liu, L. Lin, F. Liu, Z. Xie, H. Tian, X. Chen, A.C.S. Appl, Mater. Interfaces 10, 41035 (2018)

    Article  CAS  Google Scholar 

  15. A. Maleki, V. Eskandarpour, J. Rahimi, N. Hamidi, Carbohydr. Polym. 208, 251 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. J. Ren, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, Int. J. Hydrogen Energy 42, 289 (2017)

    Article  CAS  Google Scholar 

  17. I. Ahmed, S.H. Jhung, Biochem. Pharmacol. 17, 136 (2014)

    CAS  Google Scholar 

  18. L. Shaozhou, H. Fengwei, Nanoscale 7, 7482 (2015)

    Article  CAS  Google Scholar 

  19. R.A. Raj Kumar, K. Mondal, P.K. Panda, A. Kaushik, Y.K.M. Rajeev Ahuja, H.G. Rubahn, J. Mater. Chem. B 8, 8992 (2020)

    Article  Google Scholar 

  20. P. T., C. D. J. Ratchapol, Biomaterials 10, 2756 (2020)

  21. Y.Z. Huai-Xin, Z. Quan, S. Shao-Kai, Y. Chunshui, Z. Xuejun, Rui-Jun Li, and Yan-Fu. Chem. Sci. 8, 5294 (2016)

    Google Scholar 

  22. D. Wang, J. Zhou, R. Shi, H. Wu, R. Chen, B. Duan, G. Xia, P. Xu, H. Wang, S. Zhou, C. Wang, H. Wang, Z. Guo, 7 (2017)

  23. J.W.M. Osterrieth, D. Wright, H. Noh, C. Kung, D. Vulpe, A. Li, J.E. Park, R.P. Van Duyne, P.Z. Moghadam, J.J. Baumberg, O.K. Farha, D. Fairen-jimenez, J. Am. Chem. Soc. 141, 3893 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. B. Wu, J. Fu, Y. Zhou, S. Luo, and Y. Zhao, Acta Pharm. Sin. B (2020)

  25. L. Lu, M. Ma, C. Gao, H. Li, L. Li, F. Dong, and Y. Xiong, Pharmaceutics 12, (2020)

  26. N. Ahmadi Nasab, H. Hassani Kumleh, M. Kazemzad, F. Ghavipanjeh, Iran. J. Chem. Chem. Eng. 33, 37 (2014)

    CAS  Google Scholar 

  27. S. Kim, M.J. Stébé, J.L. Blin, A. Pasc, J. Mater. Chem. B 2, 7910 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. S. Ghosh, Mesoporous Silica-Based Nano Drug-Delivery System Synthesis, Characterization, and Applications (Elsevier Inc., 2019)

  29. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, J. Mol. Liq. 231, 306 (2017)

    Article  CAS  Google Scholar 

  30. C. Adhikari, A. Mishra, D. Nayak, A. Chakraborty, J. Drug Deliv. Sci. Technol. 47, 1 (2018)

    Article  CAS  Google Scholar 

  31. J. Ying, A. Herbst, Y.X. Xiao, H. Wei, G. Tian, Z. Li, X.Y. Yang, B.L. Su, C. Janiak, Inorg. Chem. 57, 899 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. X. Jia, Z. Yang, Y. Wang, Y. Chen, H. Yuan, H. Chen, X. Xu, X. Gao, Z. Liang, Y. Sun, J.R. Li, H. Zheng, R. Cao, ChemMedChem 13, 400 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Z.Q. Li, A. Wang, C.Y. Guo, Y.F. Tai, L.G. Qiu, Dalt. Trans. 42, 13948 (2013)

    Article  CAS  Google Scholar 

  34. H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A.R. Fakhari, M.M. Amini, Electrochim. Acta 88, 301 (2013)

    Article  CAS  Google Scholar 

  35. L. Han, H. Qi, D. Zhang, G. Ye, W. Zhou, C. Hou, W. Xu, Y. Sun, New J. Chem. 41, 13504 (2017)

    Article  CAS  Google Scholar 

  36. S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, J. Lin, Adv. Funct. Mater. 20, 1166 (2010)

    Article  CAS  Google Scholar 

  37. P. George, R.K. Das, P. Chowdhury, Microporous Mesoporous Mater. 281, 161 (2019)

    Article  CAS  Google Scholar 

  38. Promega Corporation, Promega - Protocols & Applications Guide (2009)

  39. P. Horcajada, S. Surblé, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Grenèche, I. Margiolaki, G. Férey, Chem. Commun. 100, 2820 (2007)

    Article  Google Scholar 

  40. X. Ke, N. Qin, T. Zhang, F. Ke, X. Yan, J. Inorg. Organomet. Polym. Mater. 30, 935 (2020)

    Article  CAS  Google Scholar 

  41. N.M. Mahmoodi, J. Abdi, M. Oveisi, M. Alinia Asli, M. Vossoughi, Mater. Res. Bull. 100, 357 (2018)

    Article  CAS  Google Scholar 

  42. S.E. Moradi, S. Dadfarnia, A.M. Haji Shabani, S. Emami, Desalin. Water Treat. 56, 709 (2015)

    Article  CAS  Google Scholar 

  43. S.M. Shawky, A.A. Abo-alhassan, H. Lill, D. Bald, S.F. El-khamisy, E. M. Ebeid 1, 1 (2016)

    Google Scholar 

  44. A. Lajevardi, M. Hossaini, A. Badiei, M. Armaghan, J. Mol. Liq. 307, 112996 (2020)

    Article  CAS  Google Scholar 

  45. P. Horcajada, C. Serre, M. Vallet-regí, M. Sebban, F. Taulelle, G. Førey, 6120 (2006)

  46. C.R. Quijia, C. Lima, C. Silva, R.C. Alves, R. Frem, M. Chorilli, J. Drug Deliv. Sci. Technol. 61, 102217 (2021)

    Article  CAS  Google Scholar 

  47. K. Fujioka, M. Pans, S. Joyal, Clin. Ther. 25, 515 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. C. Guo, Haibin, Y. Shen, K. Feng, Y. Xia, X. Qu, F. Wan, Zhang, Chem. Eng. J. 403, 126432 (2021)

    Article  CAS  Google Scholar 

  49. Z. Zou, S. Li, D. He, X. He, K. Wang, L. Li, X. Yang, H. Li, J. Mater. Chem. B 5, 2126 (2017)

    Article  CAS  PubMed  Google Scholar 

  50. L. Chen, J. Zhang, X. Zhou, S. Yang, Q. Zhang, W. Wang, Z. You, C. Peng, C. He, Acta Biomater. 86, 406 (2019)

    Article  CAS  PubMed  Google Scholar 

  51. N.D. Bikiaris, N.M. Ainali, E. Christodoulou, M. Kostoglou, T. Kehagias, E. Papasouli, E.N. Koukaras, S.G. Nanaki, Nanomaterials 10, 1 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge PNBP Universitas Sebelas Maret in the scheme Advanced Applied Research (PUT) project number 260/UN27.22/HK.07.00/2021 for funding.

Funding

This study was funded by PNBP Universitas Sebelas Maret in the scheme of Advanced Applied Research (PUT) under Grant Number 260/UN27.22/HK.07.00/2021.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: WWL; methodology: NF, WWL; TES: formal analysis and investigation: NF, OAS; writing—original draft preparation: NF, WWL, OAS; writing—review and editing: OAS, WWL, TES, LL, FRW; funding acquisition: [WWL], …; Resources: [WWL], …; Supervision: [WWL, TES, FRW].

Corresponding author

Correspondence to Witri Wahyu Lestari.

Ethics declarations

Conflcit of interest

The authors have no relevant financial or non-financial interest to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faaizatunnisa, N., Lestari, W.W., Saputra, O.A. et al. Slow-Release of Curcumin Induced by Core–Shell Mesoporous Silica Nanoparticles (MSNs) Modified MIL-100(Fe) Composite. J Inorg Organomet Polym 32, 1744–1754 (2022). https://doi.org/10.1007/s10904-022-02230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02230-2

Keywords

Navigation