Skip to main content
Log in

Enhanced Photo Catalytic Activity of ZnO Nano Particles Co-doped with Rare Earth Elements (Nd and Sm) Under UV Light Illumination

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present report, synthesis of zinc oxide (ZnO) nano particles (NPs) in pure form, 1 wt% of neodymium (Nd)-doped and 1 wt% of neodymium (Nd) and samarium (Sm) co-doped ZnO NPs in doped form by using simple co-precipitation method (samples namely PZ as pure, NZ as Nd-doped ZnO and NSZ as Nd–Sm co-doped ZnO NPs). Powder X-ray diffraction patterns of all the synthesized samples expose the hexagonal crystal structure of ZnO NPs without any impurity. The various functional groups presented in the synthesized samples were analyzed by Fourier-transform infrared spectroscopy studies. From Ultraviolet (UV)–Visible Diffuse Reflectance Spectroscopy (DRS), the band gap was found to be 2.81 eV, 2.90 eV and 3.10 eV respectively for pure, Nd-doped and Nd–Sm co-doped ZnO NPs. Photoluminescence (PL) spectrum displays the broad emission at 393 nm and 450 nm for all the synthesized samples. The agglomeration of flower-like morphology of pure ZnO NPs, flake-like structure of Nd-doped and rod-like morphology of Nd–Sm co-doped ZnO NPs were examined by scanning electron microscopy. The surface chemical composition of samples was carried out with X-ray photoelectron spectroscopy. The photocatalytic activity of the prepared samples for dye degradation of acid orange 7 (AO-7) and acid red 13 (AR-13) was studied under UV light. The result revealed that, the Nd–Sm co-doped ZnO NPs found to have efficient degradation candidate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.H. Zheng, J.L. Song, Z. Zhao, Q. Jiang, J.S. Lian, Optical and magnetic properties of Nd-doped ZnO nano particles. Cryst. Res. Technol. 47, 1–6 (2012)

    Article  Google Scholar 

  2. A.T. Ravichandran, R. Karthick, A. Robert Xavier, R. Chandramohan, S. Mantha, Influence of Sm doped ZnO Nano particles with enhanced photoluminescence and antibacterial efficiency. J. Mater. Sci.: Mater. Electron. 28, 6643–6648 (2017)

    CAS  Google Scholar 

  3. J.-Q. Wen, J.-M. Zhang, G.-X. Chen, H. Wu, X. Yang, The structural, electronic and optical properties of Nd doped ZnO using first-principles calculations. Phys. E: Low-Dimens. Syst. Nanostruct. (2018). https://doi.org/10.1016/j.physe.2018.01.002

    Article  Google Scholar 

  4. I.L. Raj, S. Valanarasu, K. Hariprasad, J.S. Ponraj, N. Chidhambaram, V. Ganesh, H.E. Ali, Y. Khairy, Enhancement of optoelectronic parameters of Nd-doped ZnO nanowires for photodetector applications. Opt. Mater. 109, 110396 (2020)

    Article  Google Scholar 

  5. H.E. Okur, N. Bulut, T. Ates, O. Kaygili, Structural and optical characterization of Sm-doped ZnO nano particles. Bull. Mater. Sci. 42, 199 (2019)

    Article  Google Scholar 

  6. S.K. Gurav, S.E. Shirsath, R.H. Kadam, D.R. Mane, Low temperature synthesis of Li0.5ZrxCoxFe2.5–2xO4 powder and their characterizations. Powder Technol. 235, 485–492 (2013)

    Article  CAS  Google Scholar 

  7. S. Rosari, N.F. Djaja, UV light photo catalytic degradation of organic dyes with Fe-doped ZnO Nano particles. Superlattice Microstruct. 74, 217–233 (2014)

    Article  Google Scholar 

  8. K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Structural, optical, photo catalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nano particles. Phys. B: Condens. Matter. 405, 3180–3185 (2010)

    Article  CAS  Google Scholar 

  9. C. Belkhaoui, N. Mzabi, H. Smaoui, Investigations on structural, optical and dielectric properties of Mn doped ZnO NPs synthesized by co-precipitation method. Mater. Res. Bull. (2019). https://doi.org/10.1016/j.materresbull.2018.11.006

    Article  Google Scholar 

  10. S. Tauseef Munawar, F. Yasmeen, K. Hussain, A. Mahmood, M. Hussain, F. Asghar, Iqbal, Synthesis of novel heterostructure ZnO-CdO-CuO nanocomposite: characterization and enhanced sunlight driven photo catalytic activity. Mater. Chem. Phys. 249, 122983 (2020)

    Article  Google Scholar 

  11. T. Sumithra, C. Lydia Pearline, M. John Abel, A. Pramothkumar, P. Fermi Hilbert Inbaraj, J. Joseph, Prince, Studies on structural and optical behavior of SnO2/CuMn2O4 nanocomposite developed via two-step approach for photo catalytic activity Mater. Res. Exp. 6, 115047 (2019)

    Article  CAS  Google Scholar 

  12. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  13. M.H. Kahsay, A. Tadesse, D. Rama Devi, N. Belachew, K. Basavaiah, Greensynthesis of zinc oxide nanostructures and investigation of their photo catalytic and bactericidalapplications. RSC Adv. 9(63), 36967–36981 (2019)

    Article  CAS  Google Scholar 

  14. A. Shafi, N. Ahmad, S. Sultana, S. Sabir, M.Z. Khan, Ag2S-sensitized NiO-ZnO heterostructures with enhanced visible light photo catalytic activity and acetone sensing property. ACS Omega 4(7), 12905–12918 (2019)

    Article  CAS  Google Scholar 

  15. M. Faraz, F.K. Naqvi, M. Shakir, N. Khare, Synthesis of samarium-doped zinc oxide Nano particles with improved photo catalytic performance and recyclability under visible light irradiation. New J. Chem. (2018). https://doi.org/10.1039/c7nj03927a

    Article  Google Scholar 

  16. N.K. Divya, P.P. Pradyumnan, Enhancement of photo catalytic activity in Nd doped ZnO with an increase in dielectric constant. J. Mater. Sci.: Mater. Electron. 28, 2147–2156 (2017)

    CAS  Google Scholar 

  17. M.B. Javaid Akhtar, M. Tahir, H.S. Sagir, Bamufle, Improved photo catalytic performance of Gd and Nd co-doped ZnO nanorods for the degradation of methylene blue. Ceram. Int. 46, 11955–11961 (2020)

    Article  Google Scholar 

  18. Irshad, Ahmad, Inexpensive and quick photocatalytic activity of rare earth (Er, Yb) co-doped ZnO nanoparticles for degradation of methyl orange dye. Sep. Purif. Technol. 227, 115726 (2019)

    Article  Google Scholar 

  19. M. Muneer, M.S. Ba-Abbad, A. Takriff, M.S. Benamor, Nasser, Ebrahim Mahmoudi, Abdul Wahab Mohammad, Synthesis and characterization of Sm3+-doped ZnO nanoparticles via a sol–gel method and their photocatalytic application. J. Sol-Gel Sci. Technol. 85, 178–190 (2018)

    Article  Google Scholar 

  20. G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, G. Ravi, Structural, optical and antibacterial activity studies of neodymium doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 26, 7564–7576 (2015)

    CAS  Google Scholar 

  21. M. Sunil Chauhan, S. Kumar, S.C. Chhoker, V.P.S. Katyal, Awana, Structural, vibrational, optical and magnetic properties of sol–gel derived Nd doped ZnO nano particles. J. Mater. Sci.: Mater. Electron. 24, 5102–5110 (2013)

    Google Scholar 

  22. K. Deepawali Arora, A. Asokan, H. Mahajan, Kaur, D.P. Singh, Structural, optical and magnetic properties of Sm doped ZnO at dilute concentrations. RSC Adv. 6, 78122 (2016)

    Article  Google Scholar 

  23. H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, M. Muhler, The identification of hydroxyl groups on ZnO Nano particles by infrared spectroscopy. Phys. Chem. Chem. Phys. 10, 7092–7097 (2008)

    Article  CAS  Google Scholar 

  24. A. Albert Manoharan, R. Chandramohan, R. David Prabu, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, Facile synthesis and characterization of undoped, Mn doped and Nd co-doped CuO nano particles for optoelectronic and magnetic applications. J. Mol. Struct. (2018). https://doi.org/10.1016/j.molstruc.2018.06.018

    Article  Google Scholar 

  25. O.M. Ntwaeaborwa, S.J. Mofokeng, V. Kumar, R.E. Kroon, Structural, optical and photoluminescence properties of Eu3+ doped ZnO nano particles. Spectrochem. Acta A: Mol. Biomol. Spectrosc. 182, 42–49 (2017)

    Article  CAS  Google Scholar 

  26. V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nano particles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717–2725 (2012)

    Article  CAS  Google Scholar 

  27. N. Aggarwal, K. Kaur, A. Vasishth, N.K. Verma, Structural, optical and magnetic properties of gadolinium-doped ZnO nano particles. J. Mater. Sci.: Mater. Electron. 27, 13006–13011 (2016)

    CAS  Google Scholar 

  28. K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Study of effect of planetary ball milling on ZnO nano powder synthesized by co-precipitation. J. Alloys Compd. 617(2013), 404–407 (2014)

    Article  CAS  Google Scholar 

  29. K.C. Verma, N. Goyal, R.K. Kotnala, Lattice defect-formulated ferromagnetism and UV photo-response in pure and Nd, Sm substituted ZnO thin films. Phys. Chem. Chem. Phys. 21, 12540 (2019)

    Article  CAS  Google Scholar 

  30. N. Mohamed Basith, J. Judith Vijaya, L. John Kennedy, M. Bououdina, Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E 53, 193–199 (2013)

    Article  Google Scholar 

  31. A. Arulraj, M. Ramesh, B. Subramanian, G. Senguttuvan, In-situ temperature and thickness control grown 2D-MoS2 via pulsed laser ablation for photovoltaic devices. Sol. Energy 174, 286–295 (2018)

    Article  CAS  Google Scholar 

  32. R. Karthick, A. Arulraj, M. Ramesh, M. Selvaraj, Free-standing graphene/NiMoS paper as cathode for quasi-solid-state dye-sensitized solar cells. J. Colloid Interface Sci. 530, 179–188 (2018)

    Article  CAS  Google Scholar 

  33. J. Zhang, S.J. Deng, S.Y. Liu, J.M. Chen, B.Q. Han, Y. Wang, Y.D. Wang, Preparation and photocatalytic activity of Nd doped ZnO nanoparticles. Mater. Technol. 29(5), 262–268 (2014)

    Article  CAS  Google Scholar 

  34. A. Khataee, B. Vahid, S. Saadi, S.W. Joo, Development of an empirical kinetic model for sonocatalytic process using neodymium doped zinc oxide nanoparticles. Ultrason. Sonochem. 29, 146–155 (2016)

    Article  CAS  Google Scholar 

  35. D. Ranjith Kumar, K.S. Ranjith, R.T. Rajendra Kumar, Structural, optical, photocurrent and solar driven photocatalytic properties of vertically aligned samarium doped ZnO nanorod arrays. Optik 154, 115–125 (2018)

    Article  CAS  Google Scholar 

  36. B. Krishnakumar, B. Subash, M. Swaminathan, AgBr–ZnO– An efficient nano-photocatalyst for the mineralization of acid black 1 with UV light. Sep. Purif. Technol. 85, 35–44 (2012)

    Article  CAS  Google Scholar 

  37. B.S. Ong, C. Li, Y. Li, Y. Wu, R. Loutfy, Stable, Solution- Processed, High-Mobility ZnO Thin-Film Transistors. J. Am. Chem. Soc. 129, 2750–2751 (2007)

    Article  CAS  Google Scholar 

  38. P.G. Freire, R.H. Montes, F.C. Romeiro, S.C. Lemos, R.C. Lima, E.M. Richter, R.A. Munoz, Morphology of ZnO nanoparticles bound to carbon nanotubes affects electrocatalytic oxidation of phenolic compounds. Sens. Actuators B Chem. 223, 557–565 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, P., Pramothkumar, A. & Mani, P. Enhanced Photo Catalytic Activity of ZnO Nano Particles Co-doped with Rare Earth Elements (Nd and Sm) Under UV Light Illumination. J Inorg Organomet Polym 32, 1668–1680 (2022). https://doi.org/10.1007/s10904-022-02228-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02228-w

Keywords

Navigation