Skip to main content
Log in

Improved photocatalytic performance of nanostructured SnO2 via addition of alkaline earth metals (Ba2+, Ca2+ and Mg2+) under visible light irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure and alkaline earth metal (Ba2+, Ca2+ and Mg2+)-doped tin oxide nanoparticles were synthesized by simple co-precipitation, and their structural, optical, functional, morphological and compositional properties were analyzed in detail using powder X-ray diffraction, UV–visible spectroscopy, photoluminescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and energy-dispersive analysis of X-ray (EDAX). XRD revealed the formation of rutile tetragonal structure, and the crystallite size has decreased from 28 to 24 nm by the addition of alkaline metal dopants. FTIR spectra confirmed the presence of fundamental vibration modes of SnO2. The optical band gap energy was decreased to 3.05, 3.19 and 2.98 eV by introducing Ba2+, Ca2+ and Mg2+ ions, respectively. Photoluminescence spectra showed defect-related emission peaks, and their intensities were found to increase in doped SnO2 samples. EDAX spectra confirmed the presence of Sn, O, Ba, Ca and Mg elements. The photocatalytic activity of pure and alkaline metal-doped SnO2 catalyst has been investigated under visible light irradiation by using methylene blue dye. The results showed that the Mg-doped SnO2 catalyst has a higher photodegradation efficiency (~ 95.7%) compared with other investigated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Pascariu, A. Airinei, N. Olaru, L. Olaru, V. Nica, Photocatalytic degradation of rhodamine B dye using ZnO–SnO2 electrospun ceramic nanofibers. Ceram. Int. 42, 6775–6781 (2016)

    Google Scholar 

  2. Dezhi Wang, Su Boyu, Lu Yan Jiang, Boon K. Li, Zhuangzhi Wu Ng, Fangyang Liu, Polytype 1T-2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chem. Eng. Journal. 330, 102–108 (2017)

    Google Scholar 

  3. H. Kono, K. Ogasawara, R. Kusumoto, K. Oshima, H. Hashimoto, Y. Shimizu, Cationic cellulose hydrogels cross-linked by poly (ethylene glycol): preparation, molecular dynamics, and adsorption of anionic dyes. Carbo. hydr. Polym. 152, 170–180 (2016)

    Google Scholar 

  4. Z. Huang, Y. Li, W. Chen, J. Shi, N. Zhang, X. Wang, Z. Li, L. Gao, Y. Zhang, Modified bentonite adsorption of organic pollutants of dye wastewater. Mater. Chem. Phys. 202, 266–276 (2017)

    Google Scholar 

  5. P. Wu, L.Y. Jiang, Z. He, Y. Song, Treatment of metallurgical industry wastewater for organic contaminant removal in China: status, challenges, and perspectives. Environ. Sci. Water Res. Technol. 3, 1015–1031 (2017)

    Google Scholar 

  6. S. Danwittayakul, M. Jaisai, J. Dutta, Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites. Appl. Catal. B 163, 1–8 (2015)

    Google Scholar 

  7. Y.C. Xu, Z.X. Wang, X.Q. Cheng, Y.C. Xiao, L. Shao, Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment. Chem. Eng. J. 303, 555–564 (2016)

    Google Scholar 

  8. S. Ameen, H.-K. Seo, M.S. Akhtar, H.S. Shin, Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem. Eng. J. 210, 220–228 (2012)

    Google Scholar 

  9. C.M. Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, N. Mongwaketsi, D. Letsholathebe, G.T. Mola, N.A. Al-Dhabi, M.V. Arasu, M. Henini, J. Kennedy, M. Maaza, B. Jeyaraj, Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/visible light induced removal of organic dye from urban wastewater. S. Afr. J. Chem. Eng. 26, 49–60 (2018)

    Google Scholar 

  10. Y.S. Reddy, C.M. Magdalane, K. Kaviyarasu, G.T. Mola, J. Kennedy, M. Maaza, Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller’s earth. J. Phys. Chem. Solids 123, 43–51 (2018)

    ADS  Google Scholar 

  11. A. Hamrouni, N. Moussa, F. Parrino, A. Di Paola, A. Houas, L. Palmisano, Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. J. Mol. Catal. A: Chem. 390, 133–141 (2014)

    Google Scholar 

  12. Q. Luo, L. Wang, D. Wang, R. Yin, X. Li, J. An, X. Yang, Preparation, characterization and visible-light photocatalytic performances of composite films prepared from polyvinyl chloride and SnO2 nanoparticles. J. Environ. Chem. Eng. 3, 622–629 (2015)

    Google Scholar 

  13. S.A. Ansari, M.M. Khan, M. Omaish, J. Lee, M.H. Cho, Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm. J. Phys. Chem. C 117, 27023–27030 (2013)

    Google Scholar 

  14. S.K. Pardeshi, A.B. Patil, A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol. Energy 82, 700–705 (2008)

    ADS  Google Scholar 

  15. Z. Zhao, H. Tan, H. Zhao, Y. Lv, L. Zhou, Y. Song, Z. Sun, Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755–2757 (2014)

    Google Scholar 

  16. R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng., C 33, 2235–2244 (2013)

    Google Scholar 

  17. S. Liu, C. Li, J. Yu, Q. Xiang, Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. Cryst. Eng. Commun. 13, 2533–2541 (2011)

    Google Scholar 

  18. E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 166–167, 603–643 (2015)

    Google Scholar 

  19. G.R. Malpass, D.W. Miwa, S.A. Machado, A.J. Motheo, SnO2-based materials forpesticide degradation. J. Hazard. Mater. 180, 145–151 (2010)

    Google Scholar 

  20. C.A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340 (2006)

    Google Scholar 

  21. R. Yang, Y. Gu, Y. Li, J. Zheng, X. Li, Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage. Acta Mater. 58, 866–874 (2010)

    Google Scholar 

  22. W. Zhou, R. Liu, Q. Wan, Q. Zhang, A.L. Pan, L. Guo, B. Zou, Bound exciton and optical properties of SnO2 one-dimensional nanostructures. J. Phys. Chem. C 113, 1719–1726 (2009)

    Google Scholar 

  23. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci.: Mater. Electron. 25, 730–735 (2014)

    Google Scholar 

  24. M. Karuppaiah, P. Sakthivel, S. Asaithambi, R. Murugan, R. Yuvakkumar, G. Ravi, Formation of one dimensional nanorods with microsphere of MnCO3 using Ag as dopant to enhance the performance of pseudocapacitors. Mater. Chem. Phys. 228, 1–8 (2019)

    Google Scholar 

  25. R. Murugan, L. Kashinath, R. Subash, P. Sakthivel, K. Byrappa, S. Rajendran, G. Ravi, Pure and alkaline metal ion (Mg, Ca, Sr, Ba) doped cerium oxide nanostructures for photo degradation of methylene blue. Mater. Res. Bull. 97, 319–325 (2018)

    Google Scholar 

  26. S. Asaithambi, P. Sakthivel, M. Karuppaiah, R. Murugan, R. Yuvakkumar, G. Ravi, Preparation of SnO2 nanoparticles with addition of Co ions for photocatalytic activity of brilliant green dye degradation. J. Electron. Mater. 48, 2183–2191 (2019)

    ADS  Google Scholar 

  27. N. Lavanya, S. Radhakrishnan, C. Sekar, Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles. Biosens. Bioelectron. 36, 41–47 (2012)

    Google Scholar 

  28. A. Dieguez, A. Romano-Rodrguez, A. Vila, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550–1557 (2001)

    ADS  Google Scholar 

  29. P. Sangeetha, V. Sasirekha, V. Ramakrishnan, Micro-Raman investigation of tin dioxide nanostructured material based on annealing effect. J. Raman Spectrosc. 42, 1634–1639 (2011)

    ADS  Google Scholar 

  30. L. Xi, D. Qian, X. Tang, C. Chen, High surface area SnO2 nanoparticles: synthesis and gas sensing properties. Mater. Chem. Phys. 108, 232–236 (2008)

    Google Scholar 

  31. J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles. Ceram. Int. 38, 5563–5570 (2012)

    Google Scholar 

  32. A. Adnan, N.A. Razana, I.A. Rahman, M.A. Farrukh, Synthesis and characterization of high surface area tin oxide nanoparticles via the sol–gel method as a catalyst for the hydrogenation of styrene. J. Chin. Chem. Soc. 57, 222–229 (2010)

    Google Scholar 

  33. O.N. Gavrilenko, E.V. Pashkova, A.G. Belous, Effect of synthesis methods on the morphology of nanosized tin dioxide particles. Russian. J. Inorg. Chem. 52, 1835–1839 (2007)

    Google Scholar 

  34. J. Ding, X. Yan, J. Li, B. Shen, J. Yang, J. Chen, Q. Xue, Enhancement of field emission and photoluminescence properties of graphene–SnO2 composite nanostructures. ACS Appl. Mater. Interfaces. 3, 4299–4305 (2011)

    Google Scholar 

  35. G. Feng, F.W. Shu, J.Z. Meng, X. Dong, R.Y. Duo, Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    Google Scholar 

  36. F.E. Ghodsi, J. Mazloom, Optical, electrical and morphological properties of p-type Mn-doped SnO2 nanostructured thin films prepared by sol-gel process. Appl. Phys. A 108, 693–700 (2012)

    ADS  Google Scholar 

  37. L. Hu, F. Chen, P. Hu, L. Zou, X. Hu, Hydrothermal synthesis of SnO2/ZnS nanocomposite as a photocatalyst for degradation of Rhodamine B under simulated and natural sunlight. J. Mol. Catal. A: Chem. 411, 203–213 (2016)

    Google Scholar 

  38. A. Kar, S. Sain, D. Rossouw, B.R. Knappett, S.K. Pradhan, A.E.H. Wheatley, Facile synthesis of SnO2–PbS nanocomposites with controlled structure for applications in photocatalysis. Nanoscale 8, 2727–2739 (2016)

    ADS  Google Scholar 

  39. E.H. Umukoro, N. Kumar, J.C. Ngila, O.A. Arotiba, Expanded graphite supported p–n MoS2–SnO2 heterojunction nanocomposite electrode for enhanced photo-electrocatalytic degradation of a pharmaceutical pollutant. J. Electroanal. Chem. 827, 193–203 (2018)

    Google Scholar 

  40. A. Ahmed, M.N. Siddique, U. Alam, T. Ali, P. Tripathi, Improved photocatalytic activity of Sr doped SnO2 nanoparticles: a role of oxygen vacancy. Appl. Surf. Sci. 463, 976–985 (2019)

    ADS  Google Scholar 

  41. B. Babu, M. Cho, C. Byon, J. Shim, Sunlight-driven photocatalytic activity of SnO2 QDs-g-C3N4 nanolayers. Mater. Lett. 212, 327–331 (2018)

    Google Scholar 

Download references

Acknowledgements

S.Asaithambi gratefully acknowledges RUSA 2.0 for awarding Ph.D. fellowship (F.No.Alu/RUSA/Ph.D Fellowships/2019) and G. Ravi greatly acknowledges the DST-SERB (File No. EMR/2017/001999), UGC-SAP, DST-FIST, DST-PURSE and RUSA 2.0 for financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaithambi, S., Sakthivel, P., Karuppaiah, M. et al. Improved photocatalytic performance of nanostructured SnO2 via addition of alkaline earth metals (Ba2+, Ca2+ and Mg2+) under visible light irradiation. Appl. Phys. A 126, 265 (2020). https://doi.org/10.1007/s00339-020-3441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3441-8

Keywords

Navigation