Skip to main content
Log in

Effect of Cobalt and Nickel Doping on Structural and Magnetic Properties of Iron Oxide Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two series samples of Iron Oxide nanoparticles doped with nickel and cobalt with different doping values (x = 0.01; 0.03; 0.05 and 0.07), were successfully synthesized by using sol–gel method, and then they were characterized by X-ray diffraction, scanning electron and vibrating sample magnetometer (VSM). X-ray diffraction analysis of two series samples showed the formation α-Fe2O3 nanoparticles, accompanied by two phases iron spinels, CoFe2O4 and NiFe2O4. In addition, the variations in grain size were observed for both two series. The observation by scanning electron microscopy reveals a change in the morphology of the grains of all the samples doped, which confirm the cobalt and nickel effect on the morphology of iron oxide nanoparticles. Magnetic measurements which were measured by VSM showed significant magnetic parameters such as coercivity and magnetization besides the ferromagnetic behavior of both two series doped with Cobalt and Nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.D. Powell, A.J. Atkinson, Y. Ma, M. Marcos-Hernandez, D. Villagran, P. Westerhoff, M.S. Wong, J. Nanopart. Res. 2, 22–48 (2020). https://doi.org/10.1007/s11051-020-4770-4

    Article  CAS  Google Scholar 

  2. N. Pariona, M. Herrera-Trejo, J. Oliva, A.I. Martinez, J. Nanomater. 2016, 3427809 (2016). https://doi.org/10.1155/2016/3427809

    Article  CAS  Google Scholar 

  3. C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, Powder Technol. 60, 487–499 (2013). https://doi.org/10.1016/j.powtec.2013.06.011

    Article  CAS  Google Scholar 

  4. F. Mueller, D. Bresser, V.S.K. Chakravadhanula, S. Passerini, J. Power Sources 299, 398–402 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.018

    Article  CAS  Google Scholar 

  5. H. Katsuki, S. Komarneni, J. Am. Ceram. Soc. 86, 183–185 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03300.x

    Article  CAS  Google Scholar 

  6. R. Kumar, S. Shampa, G. Suja, S. Lakshmana Senthil, T.V. Kumar, Colloids Surf. B. 157, 101–109 (2017). https://doi.org/10.1016/j.colsurfb.2017.05.052

    Article  CAS  Google Scholar 

  7. K. Kamburova, V. Milkova, Ts. Radeva, Colloids Surf. A. 462, 237–243 (2014). https://doi.org/10.1016/j.colsurfa.2014.09.018

    Article  CAS  Google Scholar 

  8. H. Jingwei, H. Guowen, D. Yong, P. Mingchun, M. Baochun, J. Catal. 340, 261–269 (2016). https://doi.org/10.1016/j.jcat.2016.05.007

    Article  CAS  Google Scholar 

  9. W. Dechao, J. Lijun, L. Yang, H. Haoquan, Fuel 210, 803–810 (2017). https://doi.org/10.1016/j.fuel.2017.09.008

    Article  CAS  Google Scholar 

  10. C. By Jun, X. Lina, L. Weiyang, G. Xinglong, Adv. Mater. 17, 582–586 (2005). https://doi.org/10.1002/adma.200401101

    Article  CAS  Google Scholar 

  11. C. Chang-Yan, Q. Jin, Y. Wen-Sheng, Z. Jun-Fa, W. Zi-Yu, S. Wei-Guo, Am. Chem. Soc. Langmuir 28, 4573–4579 (2012). https://doi.org/10.1021/la300097y

    Article  CAS  Google Scholar 

  12. K. Munawar, Y. Jianjia, L. Ning, L.L. Robert, J. Nanopart. Res. 16, 23–62 (2014). https://doi.org/10.1007/s11051-014-2362-x

    Article  CAS  Google Scholar 

  13. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Results Phys. 7, 3007–3015 (2017). https://doi.org/10.1016/j.rinp.2017.07.066

    Article  Google Scholar 

  14. T.K. Kundu, M. Mukherjee, D. Chakravorty, J. Mater. Sci. 33, 1759–1763 (1998). https://doi.org/10.1023/A:1004376515384

    Article  CAS  Google Scholar 

  15. C. Baratto, P.P. Lottici, D. Bersani, G. Antonioli, G. Gnappi, A. Montener, J. Sol-Gel. Sci. Technol. 13, 667–671 (1998). https://doi.org/10.1023/A:1008694519106

    Article  CAS  Google Scholar 

  16. M. Qasim, K. Asghar, D. Das, Ceram. Int. 45, 24971–24981 (2019). https://doi.org/10.1016/j.ceramint.2019.04.049

    Article  CAS  Google Scholar 

  17. S. Munjal, N. Khare, B. Sivakumar, D. Nair Sakthikumar, J. Magnet. Magnet. Mater. 477, 388–395 (2019). https://doi.org/10.1016/j.jmmm.2018.09.007

    Article  CAS  Google Scholar 

  18. H.J. Zhang, L.Z. Liu, X.R. Zhang, S. Zhang, F.N. Meng, J. Alloy. Compd. 788, 1103–1112 (2019). https://doi.org/10.1016/j.jallcom.2019.03.009

    Article  CAS  Google Scholar 

  19. S. Zhang, W. Jiang, Y. Li, X. Yang, P. Sun, F. Liu, X. Yan, Y. Gao, X. Liang, J. Ma, G. Lu, Sensors Actuators B 291, 266–274 (2019). https://doi.org/10.1016/j.snb.2019.04.090

    Article  CAS  Google Scholar 

  20. J.Y. Patil, D.Y. Nadargi, J.L. Gurav, I.S. Mulla, S.S. Suryavanshi, Mater. Lett. 124, 144–147 (2014). https://doi.org/10.1016/j.matlet.2014.03.051

    Article  CAS  Google Scholar 

  21. G. Karunakaran, M. Kundu, G. Maduraiveeran, E. Kolesnikov, M.V. Gorshenkov, S.K. Balasingam, S. Kumari, M. Sasidharan, D. Kuznetsov, Microporous Mesoporous Mater. 272, 1–7 (2018). https://doi.org/10.1016/j.micromeso.2018.06.005

    Article  CAS  Google Scholar 

  22. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, K. Kaviyarasu, Mater. Chem. Phys. 221, 11–28 (2019). https://doi.org/10.1016/j.matchemphys.2018.09.012

    Article  CAS  Google Scholar 

  23. X. Gao, W. Wang, J. Bi, Y. Chen, X. Hao, X. Sun, J. Zhang, Electrochim. Acta 296, 181–189 (2019). https://doi.org/10.1016/j.electacta.2018.11.054

    Article  CAS  Google Scholar 

  24. G. Ying, L. Tao, W. Ning, L. Qiang, L. Hong, L. Jianbao, J. Qinglong, W. Lili, G. Zhanhu, Nano Energy 38, 193–200 (2017). https://doi.org/10.1016/j.nanoen.2017.05.026

    Article  CAS  Google Scholar 

  25. S. Das, M.J. Hendry, J. Nanopart. Res. 16, 25–35 (2014). https://doi.org/10.1007/s11051-014-2535-7

    Article  CAS  Google Scholar 

  26. K. Raja, M. Mary Jaculine, M. Jose, S. Verma, A.A.M. Prince, K. Ilangovan, K. Sethusankar, S. Jerome Das, Superlattices Microstruct. 86, 306–312 (2015). https://doi.org/10.1016/j.spmi.2015.07.044

    Article  CAS  Google Scholar 

  27. D.K. Dinkar, B. Das, R. Gopalan, B.S. Dehiya, Mater. Chem. Phys. 218, 70–76 (2018). https://doi.org/10.1016/j.matchemphys.2018.07.020

    Article  CAS  Google Scholar 

  28. R. Krishnapriya, S. Praneetha, S. Kannan, A. Vadivel Murugan, ACS Sustain. Chem. Eng. 5, 9981–9992 (2017)

    Article  CAS  Google Scholar 

  29. A. Kumar Rana, Y. Kumar, P. Rajput, S.N. Jha, D. Bhattacharyya, P.M. Shirage, ACS Appl. Mater. Interf. 9(8), 7691–7700 (2017)

    Article  Google Scholar 

  30. H.P. Klug, L.E. Alexander, X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edition, vol. 32 (Wiley, Hoboken, 1974), pp. 992–999

    Google Scholar 

  31. M. Kamranifar, A. Allahresani, A. Naghizadeh, J. Hazard. Mater. 366, 545–555 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.046

    Article  CAS  PubMed  Google Scholar 

  32. Y. Slimani, M.A. Almessiere, M. Nawaz, A. Baykal, S. Akhtar, I. Ercan, I. Belenli, Ceram. Int. 45, 6021–6029 (2019). https://doi.org/10.1016/j.ceramint.2018.12.072

    Article  CAS  Google Scholar 

  33. B. Jansi Rani, M. Ravina, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Nano-Structures Nano-Objects. 14, 84–91 (2018). https://doi.org/10.1016/j.nanoso.2018.01.012

    Article  CAS  Google Scholar 

  34. W.E. Pottker, R. Ono, M.A. Cobos, A. Hernando, J.F.D.F. Araujo, A.C.O. Bruno, S.A. Lourenço, E. Longo, F.A. La Porta, Ceram. Int. 44, 17290–17297 (2018). https://doi.org/10.1016/j.ceramint.2018.06.190

    Article  CAS  Google Scholar 

  35. M. Tadic, L. Kopanja, M. Panjan, S. Kralj, J. Nikodinovic-Runic, Z. Stojanovic, Appl. Surf. Sci. 320, 183–187 (2014). https://doi.org/10.1016/j.apsusc.2017.01.115

    Article  CAS  Google Scholar 

  36. S.I. Srikrishna Ramya, C.K. Mahadevan, J. Solid State Chem. 211, 37–50 (2014). https://doi.org/10.1016/j.jssc.2013.11.022

    Article  CAS  Google Scholar 

  37. B. Purnama, A.T. Wijayanta, Suharyana, J. King Saud. Univ. Sci. 31, 956–960 (2018). https://doi.org/10.1016/j.jksus.2018.07.019

    Article  Google Scholar 

  38. M. Tadic, M. Panjan, V. Damnjanovic, I. Milosevic, Appl. Surf. Sci. 320, 183–187 (2014). https://doi.org/10.1016/j.apsusc.2014.08.193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiza Bouaïcha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabsi, I., Bouaïcha, F., Ziouche, A. et al. Effect of Cobalt and Nickel Doping on Structural and Magnetic Properties of Iron Oxide Nanoparticles. J Inorg Organomet Polym 32, 1287–1294 (2022). https://doi.org/10.1007/s10904-021-02185-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02185-w

Keywords

Navigation