Skip to main content

Advertisement

Log in

Thermal pyrolysis and kinetic analysis of a ZnxCo1−x ZiF-8 metal–organic framework for recent applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate frameworks (ZIFs) are interesting materials for use in several aspects: energy storage material, gas sensing, and photocatalysis. The thermal stability and pyrolysis process are crucial to determine the active phase of the material. A deep understanding of the pyrolysis mechanism is in demand. So, the thermodynamics and combustion process with different heating rates were examined, and the kinetic parameters were computed employing thermogravimetric tests. Based on the TG analysis of combustion, pyrolysis moves to the high-temperature region with an increase in heating rate. The decomposition process can be separated into dehydration (300–503 K) and pyrolysis reaction (703–1100 K). Three points of the decomposition process are performed by dynamical analysis owing to shifts of slopes, but the combustion process has only one stage. Dynamical parameters, for instance, the possible mechanism, the pre-exponential factor, and the apparent activation energy were obtained through comparison using the Kissinger formula. The thermodynamics analysis of the Zn1−xCox ZIF-8 materials is an effective way to explore the temperature influence on the process of pyrolysis, which can benefit in several recent applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wang et al., Study on catalytic effect and mechanism of MOF (MOF = ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium. Int. J. Hydrogen Energy 44(54), 28863–28873 (2019)

    Article  CAS  Google Scholar 

  2. Y. Xu et al., Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 376, 292–318 (2018)

    Article  CAS  Google Scholar 

  3. K.-B. Wang, Q. Xun, Q. Zhang, Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2(1), 100025 (2020)

    Article  CAS  Google Scholar 

  4. S. AliAkbarRazavi, A. Morsali, Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 399, 213023 (2019)

    Article  CAS  Google Scholar 

  5. R.-B. Lin et al., Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019)

    Article  CAS  Google Scholar 

  6. Y. Li et al., Advances of metal–organic frameworks for gas sensing. Polyhedron 154, 83–97 (2018)

    Article  CAS  Google Scholar 

  7. T. Mehtab et al., Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J. Energy Storage 21, 632–646 (2019)

    Article  Google Scholar 

  8. G. Xu et al., Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 20(4), 191–209 (2017)

    Article  CAS  Google Scholar 

  9. A. Bavykina et al., Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem. Rev. 120(16), 8468–8535 (2020)

    Article  CAS  Google Scholar 

  10. X. Zhao et al., Metal-organic frameworks for separation. Adv. Mater. 30(37), 1705189 (2018)

    Article  Google Scholar 

  11. L. Wang, M. Zheng, Z. Xie, Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6(5), 707–717 (2018)

    Article  CAS  Google Scholar 

  12. D. Saliba et al., Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 140(5), 1812–1823 (2018)

    Article  CAS  Google Scholar 

  13. M.D.J. Velásquez-Hernández et al., Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm 21(31), 4538–4544 (2019)

    Article  Google Scholar 

  14. E. Ozyilmaz et al., Design of MOF-based nanobiocatalyst with super-catalytic properties with iron mineralization approach. Mater. Lett. 305, 130768 (2021)

    Article  CAS  Google Scholar 

  15. S. Chirra et al., Rapid synthesis of a novel nano-crystalline mesoporous faujasite type metal-organic framework, ZIF-8 catalyst, its detailed characterization, and NaBH4 assisted, enhanced catalytic Rhodamine B degradation. Mater. Today Commun. 26, 101993 (2021)

    Article  CAS  Google Scholar 

  16. N. Ahmad et al., Modification of zeolitic imidazolate framework-8 with amine groups for improved antibacterial activity. Mater. Today Proc. 46, 2024–2029 (2021)

    Article  CAS  Google Scholar 

  17. K. Eum et al., Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. J. Am. Chem. Soc. 137(12), 4191–4197 (2015)

    Article  CAS  Google Scholar 

  18. G. Srinivas et al., Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7(1), 335–342 (2014)

    Article  CAS  Google Scholar 

  19. H. Jiang et al., MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces. 8(40), 26817–26826 (2016)

    Article  CAS  Google Scholar 

  20. Z. Kang, L. Fan, D. Sun, Recent advances and challenges of metal–organic framework membranes for gas separation. J. Mater. Chem. A 5(21), 10073–10091 (2017)

    Article  CAS  Google Scholar 

  21. C. Zhu, Y. Peng, W. Yang, Modification strategies for metal-organic frameworks targeting at membrane-based gas separations. Green Chem. Eng. 2(1), 17–26 (2021)

    Article  Google Scholar 

  22. S.-H. Li et al., Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 50(13), 7539–7586 (2021)

    Article  CAS  Google Scholar 

  23. H.-T. Wang et al., Design and synthesis of porous C-ZnO/TiO2@ZIF-8 multi-component nano-system via pyrolysis strategy with high adsorption capacity and visible light photocatalytic activity. Microporous Mesoporous Mater. 288, 109548 (2019)

    Article  CAS  Google Scholar 

  24. E. Ozyilmaz, S. Ascioglu, M. Yilmaz, Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: biocatalyst for ester hydrolysis and kinetic resolution. Int. J. Biol. Macromol. 175, 79–86 (2021)

    Article  CAS  Google Scholar 

  25. V.V. Butova et al., Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption. Polyhedron 154, 457–464 (2018)

    Article  CAS  Google Scholar 

  26. W. Liang et al., Control of structure topology and spatial distribution of biomacromolecules in protein@ZIF-8 biocomposites. Chem. Mater. 30(3), 1069–1077 (2018)

    Article  CAS  Google Scholar 

  27. J.B. James, Y.S. Lin, Thermal stability of ZIF-8 membranes for gas separations. J. Membr. Sci. 532, 9–19 (2017)

    Article  CAS  Google Scholar 

  28. S. Mei et al., Facile synthesis and optical properties of CsPbX3/ZIF-8 composites for wide-color-gamut display. Nanomaterials 9(6), 832 (2019)

    Article  CAS  Google Scholar 

  29. A.M. Aboraia et al., Structural characterization and optical properties of zeolitic imidazolate frameworks (ZIF-8) for solid-state electronics applications. Opt. Mater. 100, 109648 (2020)

    Article  CAS  Google Scholar 

  30. S. Van Cleuvenbergen et al., ZIF-8 as nonlinear optical material: influence of structure and synthesis. Chem. Mater. 28(9), 3203–3209 (2016)

    Article  Google Scholar 

  31. L. Dou et al., Structures and electronic properties of Au clusters encapsulated ZIF-8 and ZIF-90. J. Phys. Chem. C 122(16), 8901–8909 (2018)

    Article  CAS  Google Scholar 

  32. E.R. Shaaban et al., Crystallization kinetics of new compound of V2O5–PbO–Li2O–Fe2O3 glass using differential thermal analysis. J. Alloy. Compd. 482(1–2), 440–446 (2009)

    Article  CAS  Google Scholar 

  33. A. Goel et al., Effect of BaO on the crystallization kinetics of glasses along the Diopside-Ca-Tschermak join. J. Non-Cryst. Solids 355(3), 193–202 (2009)

    Article  CAS  Google Scholar 

  34. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Article  CAS  Google Scholar 

  35. Z. Yang et al., Effects of apparent activation energy in pyrolytic carbonization on the synthesis of MOFs-carbon involving thermal analysis kinetics and decomposition mechanism. Chem. Eng. J. 395, 124980 (2020)

    Article  CAS  Google Scholar 

  36. M.R. Kim et al., Zeolitic imidazolate framework promoters in one-pot epoxy–amine reaction. J. Mater. Sci. 55(5), 2068–2076 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was produced with the financial support of the Academy of Scientific Research and Technology of Egypt; ScienceUP/GradeUp initiative: Grant Agreement No. (6553). Its contents are the sole responsibility of the authors and do not necessarily reflect the views of the Academy of Scientific Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, E.R., Aboraia, A.M., Butova, V.V. et al. Thermal pyrolysis and kinetic analysis of a ZnxCo1−x ZiF-8 metal–organic framework for recent applications. J Inorg Organomet Polym 32, 831–839 (2022). https://doi.org/10.1007/s10904-021-02181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02181-0

Keywords

Navigation