Skip to main content
Log in

Facile Synthesis and Antibacterial Activity of Bioplastic Membrane Containing In Doped ZnO/Cellulose Acetate Nanocomposite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Author Correction to this article was published on 12 September 2022

This article has been updated

Abstract

The present work addresses a facile synthesis of Indium doped zinc oxide (IZO) cellulose acetate nanocomposite membrane. The membrane was prepared by casting method. Various weights of In:ZnO nanoparticles were added to solution formed by dissolution of cellulose acetate granules in acetone. The harvested membrane, after acetone evaporation, was characterized by various techniques including X ray diffraction, scanning electron microscopy, energy dispersive X ray and elemental mapping, Fourier transform infrared spectroscopy. The results show that the In:ZnO nanoparticles are well embedded in the cellulose acetate host matrix. The elemental mapping reveals that the nanoparticles are uniformly distributed. The optical characterization reveals the reduction of the transmittance in the UV (A and B range) of the CA/IZO composite with increasing the weight of the added IZO powder. This reduction was attributed to ZnO UV absorption. No noticeable peak assigned to ZnO bond are observed. However, IR peaks are shifted towards the higher wavenumber due to the change of the bonds environment with including IZO in the CA matrix. The antibacterial action of the synthetized nanocomposite membranes was tested against Escherichia coli (E. coli). Staphylococcus aureus (S. aureus). The assay results have shown that the membrane has no activity against (E. coli). In contrary, the synthetized membrane exhibits an interesting antibacterial activity against S. aureus. The inhibition region varies from 6 to 15 mm with increasing the weight ratio of filler. A zone of inhibition (ZOI) of 18 mm was observed for the membrane prepared with 30% wt. of In:ZnO. We noticed that the ZOI radius increases with the added weight of IZO. Due the settling down of the nanoparticles only one face of the membrane exhibits an antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. L.E. Aguilar, A. Ghavami Nejad, C.H. Park, C.S. Kim, Nanomedicine 13(2), 527 (2017)

    CAS  PubMed  Google Scholar 

  2. G. El-Barbary, M.K. Ahmed, M.M. El-Desoky, A.M. Al-Enizi, A.A. Alothman, A.M. Alotaibi, A. Nafady, Synth. Met. 278, 116824 (2021)

    CAS  Google Scholar 

  3. S. Beis, S. Monteiro, R. Santos, A.S. Figueiredo, M. Guadalupe, M. Sanchez-Loredo, M.A. Lemos, F. Lemos, M. Minhalma, M. Norberta de Pinho, Water Res. 149, 225 (2019)

    Google Scholar 

  4. Y. Wu, G. Xu, W. Zhang, C. Song, L. Wang, X. Fang, L. Xu, S. Han, J. Cui, L. Gan, Carbohydr. Polym. 267, 118166 (2021)

    CAS  PubMed  Google Scholar 

  5. J. Lostea, J.-M. Lopez-Cuesta, L. Billona, H. Garay, M. Save, Progress Polym. Sci. 89, 133 (2019)

    Google Scholar 

  6. M. Abbas, M. Buntinx, W. Deferme, R. Peeters, Nanomaterials 9, 1494 (2019)

    CAS  PubMed Central  Google Scholar 

  7. M. Choi, G. Murillo, S. Hwang, J.W. Kim, J.H. Jung, C.Y. Chen, M. Lee, Nano Energy 33, 462 (2017)

    CAS  Google Scholar 

  8. E. Tang, S. Dong, Colloids Polym. Sci. 287, 1025 (2009)

    CAS  Google Scholar 

  9. S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara, H. Wada, Materials 4, 1132 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Li, M.M. Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nano Rev. 1, 1 (2010)

    Google Scholar 

  11. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Sep. Purif. Technol. 280(1), 119841 (2022)

    CAS  Google Scholar 

  12. H. Etemadi, S. Afsharkia, S. Zinatloo-Ajabshir, E. Shokri, Polym. Eng. Sci. 61, 2364–2375 (2021)

    CAS  Google Scholar 

  13. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Ceram. Int. 47(17), 23702–23724 (2021)

    CAS  Google Scholar 

  14. H. Safajou, M. Ghanbari, O. Amiri, H. Khojasteh, F. Namvar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Hydrogen Energy 46(39), 20534–20546 (2021)

    CAS  Google Scholar 

  15. S. Sharaf, M.E. El-Naggar, Cellulose 25(9), 5195–5204 (2018)

    CAS  Google Scholar 

  16. M.S. Abdelrahman, T.A. Khattab, A. Aldalbahi, M.R. Hatshan, M.E. El-Naggar, J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2020.104573

    Article  Google Scholar 

  17. A. Aldalbahi, M.E. El-Naggar, M.K. Ahmed, G. Periyasami, M. Rahaman, A.A. Menazea, J. Mater. Res. Technol. 9, 15045 (2020)

    CAS  Google Scholar 

  18. A. Aldalbahi, M. El-Naggar, T. Khattab, M. Abdelrahman, M. Rahaman, A. Alrehaili, M. El-Newehy, Polymers 12, 2501 (2020)

    CAS  PubMed Central  Google Scholar 

  19. A. Abdel-Karim, M.E. El-Naggar, E.K. Radwan, I.M. Mohamed, M. Azaam, E.R. Kenawy, Chem. Eng. J. 405, 126964 (2021)

    CAS  Google Scholar 

  20. A. Zucchelli, M.L. Focarete, C. Gualandi, S. Ramakrishna, Polym. Adv. Technol. 22, 339–349 (2011)

    CAS  Google Scholar 

  21. A.R. Unnithan, G. Gnanasekaran, Y. Sathishkumar, Y.S. Lee, C.S. Kim, Carbohydr. Polym. 102, 884 (2014)

    CAS  PubMed  Google Scholar 

  22. T.J. Sill, H.A. von Recum, Biomaterials 29, 1989 (2008)

    CAS  PubMed  Google Scholar 

  23. S. Tungprapa, I. Jangchud, P. Supaphol, Polymer 48, 5030 (2007)

    CAS  Google Scholar 

  24. T.P. Armedya, M.F. Dzikri, S.C.W. Sakti, A. Abdulloh, Y. Raharjo, S. Wafiroh, M.Z. Fahmi, BioNanoScience 9, 274 (2019)

    Google Scholar 

  25. A.W. Jatoi, Z. Khatri, F. Ahmed, M.H. Memon, J. Surf. Deterg. 18, 205 (2015)

    CAS  Google Scholar 

  26. A. W., Jatoi, I. S. Kim, and Q.Q. Ni, Appl. Nanoscience, 1 (2018)10.

  27. H. Lee, A.W. Jatoi, Y. Kyohei, K.-O. Kim, K.H. Song, J. Lee, Text. Res. J. 88, 630 (2018)

    CAS  Google Scholar 

  28. A.R. Unnithan, G. Gnanasekaran, Y. Sathishkumar, Y.S. Lee, C.S. Kim, Carbohyd. Polym. 102, 884 (2014)

    CAS  Google Scholar 

  29. S.K. Nethi, S. Das, C.R. Patra, S. Mukherjee, Biomater. Sci. 7, 2652 (2019)

    CAS  PubMed  Google Scholar 

  30. S. Subhadarshini, R. Singh, D.K. Goswami, A.K. Das, N.C. Das, Langmuir 35(52), 17166–17176 (2019)

    CAS  PubMed  Google Scholar 

  31. S. Subhadarshini, R. Singh, A. Mandal, S. Roy, S. Mandal, S. Mallik, D.K. Goswami, A.K. Das, N.C. Das, Langmuir 37(31), 9356–9370 (2021)

    CAS  PubMed  Google Scholar 

  32. S. Subhadarshini, E. Pavitra, G.S.R. Raju, N.R. Chodankar, D.K. Goswami, Y.-K. Han, Y.S. Huh, NCh. Das, A.C.S. Appl, Mater. Interfaces 12(26), 29302–29315 (2020)

    CAS  Google Scholar 

  33. S. Subhadarshini, E. Pavitra, G.S.R. Ma Raju, N.R. Chodankar, A. Mandal, S. Roy, S. Mandal, M.V. Basaveswara Rao, D.K. Goswami, Y. Suk Huh, N.C. Das, Ceram. Int. 47(11), 15293–15306 (2021)

    CAS  Google Scholar 

  34. S. Beisl, S. Monteiro, R. Santos, A.S. Figueiredo, M.G. Sanchez-Loredo, M.A. Lemos, F. Lemos, M. Minhalma, M. Norberta de Pinho, Synth. Met. 278, 116824 (2021)

    Google Scholar 

  35. M.R. Amin, M.A. Chowdhury, M.A. Kowser, Heliyon 5, 02009 (2019)

    Google Scholar 

  36. S.I. Al-Saeedi, N.S. Al-Kadhi, G.M. Al-Senani, O.A. Almaghrabi, A. Nafady, Int. J. Biol. Macromol. 182, 464 (2021)

    CAS  PubMed  Google Scholar 

  37. A.W. Jatoi, H. Ogasawara, I.S. Kim, Q.Q. Ni, Mater. Sci. Eng. C 110, 110679 (2020)

    CAS  Google Scholar 

  38. J.R. Ricardo, I.P. Matos, C. Chaparro, J.C. Silva, M.A. Valente, J.P. Borges, P.I. Soares, Carbohydr. Polym. 198, 9 (2018)

    Google Scholar 

  39. M.K. Ahmed, A.A. Menazea, A.M. Abdelghany, Int. J. Biol. Macromol. 155, 636 (2020)

    CAS  PubMed  Google Scholar 

  40. A.A. Aly, M.K. Ahmed, Int. J. Pharm. 598, 120325 (2021)

    CAS  PubMed  Google Scholar 

  41. M.Z. Fahmi, R.A. Prasetya, M.F. Dzikri, S. Candra, W. Sakti, B. Yuliarto, I. Ferdiansjah, Mater. Chem. Phys. 250, 123055 (2020)

    CAS  Google Scholar 

  42. Z. Kalaycıoğlu, N. Kahya, V. Adımcılar, H. Kaygusuz, E. Torlak, G. Akın-Evingür, F.B. Erim, Eur. Polym. J. 133, 109777 (2020)

    Google Scholar 

  43. A.A. Badawy, A.F. Ghanem, M.A. Yassin, A.M. Youssef, M.H. Abdel Rehim, Environ. Nanotechnol. Monit. Manage. 16, 0501 (2021)

    Google Scholar 

  44. M.K. Haider, A. Ullah, M. Nauman Sarwar, Y. Saito, L. Suna, S. Park, I.S. Kim, Int J. Biol. Macromol. 173, 315–326 (2021)

    CAS  PubMed  Google Scholar 

  45. Z. Lu, J. Gao, Q. He, J. Wu, D. Liang, H. Yang, Carbohydr. Polym. 156, 460 (2017)

    CAS  PubMed  Google Scholar 

  46. P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem. 114, 1173 (2009)

    CAS  Google Scholar 

  47. I.S. Elashmawi, E.M. Abdelrazek, A.M. Hezma, A. Rajeh, Phys. B Condens. Matter 434, 57 (2014)

    CAS  Google Scholar 

  48. E.M. Abdelrazek, I.S. Elashmawi, A. Hezma, A. Rajeh, Int. J. Modern Appl. Phys. 1, 83 (2012)

    Google Scholar 

  49. S.M. Hassan, A.I. Ahmed, M.A. Mannaa, Ceram. Int. 44, 6201 (2018)

    CAS  Google Scholar 

  50. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Nano Lett. 6, 866 (2006)

    CAS  PubMed  Google Scholar 

  51. G.X. Tong, F.F. Du, Y. Liang, Q. Hu, R.N. Wu, J.G. Guan, X. Hu, J. Mater. Chem. B 1, 454 (2013)

    CAS  PubMed  Google Scholar 

  52. R.R. Krishna, T.K. Ranjit, C.M. Adhar, Langmuir 27, 4020 (2011)

    Google Scholar 

  53. J. Nicole, R. Binata, T.R. Koodali, C.M. Adhar, Microbiol. Lett. 279, 71 (2008)

    Google Scholar 

  54. M.E. Culica, A.L. Chibac-Scutaru, V. Melinte, S. Coseri, Materials 13, 2955 (2020). https://doi.org/10.3390/ma13132955

    Article  CAS  PubMed Central  Google Scholar 

  55. K. Ravichandrana, R. Rathia, M. Banetoc, K. Karthikaa, P.V. Rajkumara, B. Sakthivela, R. Damodaran, Ceram. Int. 41, 3390 (2015)

    Google Scholar 

  56. S. Anithaa, S. Muthukumaran, Mater. Sci. Eng. C 108, 110387 (2020)

    Google Scholar 

Download references

Acknowledgements

This research work was funded by institutional Fund Projects under Grant number (IFPRC-197-130-2020). Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Aida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The original version of this article unfortunately contained two mistakes. The co-author N.H. Alonizan is affiliated only to the following institution:

Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.

The grant number in the Acknowledgments section should be IFPRC-197-130-2020. The Acknowledgments section should read as follows:

Acknowledgments

This research work was funded by institutional Fund Projects under Grant number (IFPRC-197-130-2020). Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah Saudi Arabia.

The original article was corrected.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aida, M.S., Alonizan, N.H., Hussein, M.A. et al. Facile Synthesis and Antibacterial Activity of Bioplastic Membrane Containing In Doped ZnO/Cellulose Acetate Nanocomposite. J Inorg Organomet Polym 32, 1223–1233 (2022). https://doi.org/10.1007/s10904-021-02171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02171-2

Keywords

Navigation