Skip to main content
Log in

DFT Study on Capacitive Property of Composites Built by Phosphomolybdic Acid with Nitrogen-Doped Graphene

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Three kinds of composites were built by nitrogen-doped graphene and phosphomolybdic acid. Based on the density functional theory (DFT), the combined energies, charge populations, orbital distributions and densities of states (DOS) were calculated. The calculated results show that the short-range interactions can be formed by oxygen atoms and nitrogen atoms, and the charge can be transferred from phosphomolybdic acid to graphene. It is found that the conductive bands (CB) of phosphomolybdic acid move to the lower-energy level. At the same time, more valence bands (VB) were found in DOS of three composites. Finally, the reason for the excellent capacitive ability of the composites is revealed. That is, nitrogen-doped graphene can improve the capacitive ability of the material by receiving the excessive electrons on surface of phosphomolybdic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.X. Guo, Y. Zhang, X. Zhang, C.D. Easton, D.R. MacFarlane, J. Zhang, Phosphomolybdic acid-assisted growth of ultrathin bismuth nanosheets for enhanced electrocatalytic reduction of CO2 to formate. ChemSusChem 12(5), 1091–1100 (2019)

    Article  CAS  Google Scholar 

  2. M. Hatori, S. Moriya, M. Fujimori, S. Kobayashi, H. Ikota, K. Shirabe, H. Yokoo, K. Kimura, M. Saio, Phosphomolybdic acid prevents nonspecific nuclear staining by picrosirius red but is converted to molybdenum blue by blue light. J. Histochem. Cytochem. 68(9), 621–634 (2020)

    Article  CAS  Google Scholar 

  3. X. Jia, L. Shen, M. Yao, Y. Liu, W. Yu, W. Guo, S. Ruan, Highly efficient low-bandgap polymer solar cells with solution-processed and annealing-free phosphomolybdic acid as hole-transport layers. ACS Appl. Mater. Interfaces 7(9), 5367–5372 (2015)

    Article  CAS  Google Scholar 

  4. M. Zhang, T. Wei, A.M. Zhang, S.-L. Li, F.-C. Shen, L.-Z. Dong, D.-S. Li, Y.-Q. Lan, Polyoxomolybdate–polypyrrole/reduced graphene oxide nanocomposite as high-capacity electrodes for lithium storage. ACS Omega 2(9), 5684–5690 (2017)

    Article  CAS  Google Scholar 

  5. Y. Nishimoto, D. Yokogawa, H. Yoshikawa, K. Awaga, S. Irle, Super-reduced polyoxometalates: excellent molecular cluster battery components and semipermeable molecular capacitors. J. Am. Chem. Soc. 136(25), 9042–9052 (2014)

    Article  CAS  Google Scholar 

  6. F. Joucken, Y. Tison, P. Le Fevre, A. Tejeda, A. Taleb-Ibrahimi, E. Conrad, V. Repain, C. Chacon, A. Bellec, Y. Girard, S. Rousset, J. Ghijsen, R. Sporken, H. Amara, F. Ducastelle, J. Lagoute, Charge transfer and electronic doping in nitrogen-doped graphene. Sci. Rep. 5, 14564 (2015)

    Article  CAS  Google Scholar 

  7. A. Kumar, K. Banerjee, M. Dvorak, F. Schulz, A. Harju, P. Rinke, P. Liljeroth, Charge-transfer-driven nonplanar adsorption of F4TCNQ molecules on epitaxial graphene. ACS Nano 11(5), 4960–4968 (2017)

    Article  CAS  Google Scholar 

  8. S.S. Kwon, J.H. Shin, J. Choi, S. Nam, W.I. Park, Defect-mediated molecular interaction and charge transfer in graphene mesh-glucose sensors. ACS Appl. Mater. Interfaces 9(16), 14216–14221 (2017)

    Article  CAS  Google Scholar 

  9. A. Ferre-Vilaplana, E. Herrero, Charge transfer, bonding conditioning and solvation effect in the activation of the oxygen reduction reaction on unclustered graphitic-nitrogen-doped graphene. Phys. Chem. Chem. Phys. 17(25), 16238–16242 (2015)

    Article  CAS  Google Scholar 

  10. D. Jiang, X. Du, Q. Liu, N. Hao, K. Wang, MoS2/nitrogen doped graphene hydrogels p-n heterojunction: efficient charge transfer property for highly sensitive and selective photoelectrochemical analysis of chloramphenicol. Biosens. Bioelectron. 126, 463–469 (2019)

    Article  CAS  Google Scholar 

  11. W. Pei, T. Zhang, Y. Wang, Z. Chen, A. Umar, H. Li, W. Guo, Enhancement of charge transfer between graphene and donor-pi-acceptor molecule for ultrahigh sensing performance. Nanoscale 9(42), 16273–16280 (2017)

    Article  CAS  Google Scholar 

  12. L. Huder, C. Rinfray, D. Rouchon, A. Benayad, M. Baraket, G. Izzet, F. Lipp-Bregolin, G. Lapertot, L. Dubois, A. Proust, L. Jansen, F. Duclairoir, Evidence for charge transfer at the interface between hybrid phosphomolybdate and epitaxial graphene. Langmuir 32(19), 4774–4783 (2016)

    Article  CAS  Google Scholar 

  13. S. Fan, X. Tang, D. Zhang, X. Hu, J. Liu, L. Yang, J. Su, Ambipolar and n/p-type conduction enhancement of two-dimensional materials by surface charge transfer doping. Nanoscale 11(32), 15359–15366 (2019)

    Article  CAS  Google Scholar 

  14. J. Gao, M. Tong, Z. Xing, Q. Jin, J. Zhou, L. Chen, H. Xu, G. Li, A covalently linked dual network structure achieved by rapid grafting of poly(p-phenylenediamine)-phosphomolybdic acid on reduced graphene oxide aerogel for improving the performance of supercapacitors. Chem. Commun. (Camb) 56(53), 7305–7308 (2020)

    Article  CAS  Google Scholar 

  15. M.M. Giangregorio, W. Jiao, G.V. Bianco, P. Capezzuto, A.S. Brown, G. Bruno, M. Losurdo, Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids. Nanoscale 7(30), 12868–12877 (2015)

    Article  CAS  Google Scholar 

  16. M. Coros, C. Varodi, F. Pogacean, E. Gal, S.M. Pruneanu, Nitrogen-doped graphene: the influence of doping level on the charge-transfer resistance and apparent heterogeneous electron transfer rate. Sensors (Basel) 20(7), 1815 (2020)

    Article  CAS  Google Scholar 

  17. G. Sarau, M. Heilmann, M. Bashouti, M. Latzel, C. Tessarek, S. Christiansen, Efficient nitrogen doping of single-layer graphene accompanied by negligible defect generation for integration into hybrid semiconductor heterostructures. ACS Appl. Mater. Interfaces 9(11), 10003–10011 (2017)

    Article  CAS  Google Scholar 

  18. C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, J. Yu, Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 33(9), 2003521 (2021)

    Article  CAS  Google Scholar 

  19. M.R. Karim, M.M. Rahman, A.M. Asiri, S. Hayami, Branched alkylamine-reduced graphene oxide hybrids as a dual proton-electron conductor and organic-only water-splitting photocatalyst. ACS Appl. Mater. Interfaces 12(9), 10829–10838 (2020)

    Article  CAS  Google Scholar 

  20. C.V. Pham, S. Repp, R. Thomann, M. Krueger, S. Weber, E. Erdem, Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials. Nanoscale 8(18), 9682–9687 (2016)

    Article  CAS  Google Scholar 

  21. J. Xu, X. Cao, J. Xia, S. Gong, Z. Wang, L. Lu, Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose. Anal. Chim. Acta 934, 44–51 (2016)

    Article  CAS  Google Scholar 

  22. M.A. Yu, Y. Feng, L. Gao, S. Lin, Phosphomolybdic acid supported single-metal-atom catalysis in CO oxidation: first-principles calculations. Phys. Chem. Chem. Phys. 20(31), 20661–20668 (2018)

    Article  CAS  Google Scholar 

  23. G. Qiu, Q. Xiao, Y. Hu, W. Qin, D. Wang, Theoretical study of the surface energy and electronic structure of pyrite FeS2 (100) using a total-energy pseudopotential method, CASTEP. J. Colloid Interface Sci. 270(1), 127–132 (2004)

    Article  CAS  Google Scholar 

  24. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)

    Article  CAS  Google Scholar 

  25. M. Korth, W. Thiel, Benchmarking semiempirical methods for thermochemistry, kinetics, and noncovalent interactions: OMx methods are almost as accurate and robust as DFT-GGA methods for organic molecules. J. Chem. Theory Comput. 7(9), 2929–2936 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Science Foundation of Shaan’xi Province (No. 2021JM-516), Shaan’xi Provincial Education Department Project (No. 18JK0836), Undergraduate Training Programs for Innovation (No. 201828004) and the Teaching Reform Project (No. 2017Y007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihua Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wang, C., Fan, G. et al. DFT Study on Capacitive Property of Composites Built by Phosphomolybdic Acid with Nitrogen-Doped Graphene. J Inorg Organomet Polym 31, 4473–4479 (2021). https://doi.org/10.1007/s10904-021-02081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02081-3

Keywords

Navigation