Skip to main content
Log in

A Highly Selective and Sensitive H2S Gas Sensor Based on Novel Nanostructure Core–Shell FeCr2O4@ZnO@MgO

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Gas detection is significant for controlling industrial and vehicle emission, house equipment security and environmental monitoring. Various devices are developed and designed for detection of CO2, CO, SO2, O2, O3, H2, NH3, and several other organic gases. The fabrication of FeCr2O4, FeCr2O4@ZnO, and FeCr2O4@ZnO@MgO core–shell nanostructure by sol–gel method and their gas sensing performance using thick films were reported here for the first time. The characterization was completed by means of X-ray diffraction (XRD), Infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), and Transmission electron microscopy (TEM) used for confirmation of crystal structure and their morphology. The synthesized oxides were formulated to identify various air pollutants including CO, CO2, Cl2, NH3, H2, and H2S. The influences of thermal annealing (300–500 °C) on the crystallization and H2S gas sensing performance were investigated. Among the three oxides studied, 355.08 is the sensitivity for FeCr2O4, 461.12 for FeCr2O4@ZnO and highest sensitivity was observed for FeCr2O4@ZnO@MgO core–shell sensor for H2S gas (500 ppm) is 597.17. The sensitivity of the measurements to relative humidity as an interfering parameter was also investigated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.R. Naqvi, V. Shukla, N.K. Jena, W. Luo, R. Ahuja, Appl. Mater. Today 19, 100574 (2020)

    Google Scholar 

  2. M. Noei, M. Ebrahimikia, Y. Saghapour, J. Nanostruct. Chem. 5, 213–217 (2015)

    CAS  Google Scholar 

  3. A.F.S. Abu-Hania, Y.E. Greish, S.T. Mahmoud, F. Awwad et al., Sens. Actuator B Chem. 253, 677–684 (2017)

    Google Scholar 

  4. M.N. Hughes, M.N. Centelles, K.P. Moore, Free Radic. Biol. Med. 47, 1346–1353 (2009)

    CAS  PubMed  Google Scholar 

  5. G.J. Sun, H. Kheel, J.K. Lee, S. Choi, S. Lee, C. Lee, Surf. Coat. Technol. 307, 1088–1095 (2016)

    CAS  Google Scholar 

  6. O. Ovsianytskyi, Y.S. Nam, O. Tsymbalenko, P.T. Lan, M.W. Moon, K.B. Lee, Sens. Actuators B Chem. 257, 278–285 (2018)

    CAS  Google Scholar 

  7. S. Kumar, V. Pavelyev, P. Mishr, N. Tripathi, Sens. Actuators A Phys. 283, 174–186 (2018)

    CAS  Google Scholar 

  8. T.B. Pollard, T.D. Kenny, J.F. Vetelino, M.P. da Cunha, Chem. Eng. J. 53, 199 (2006)

    Google Scholar 

  9. V.R. Kuma, S.M. Majhi, K.H. Kim, H.W. Kim, E.E. Kwon, Chem. Eng. J. 404, 126472 (2021)

    Google Scholar 

  10. Y. Tao, X. Cao, Y. Peng, Y. Liu, Sens. Actuators B Chem. 148, 292–297 (2010)

    CAS  Google Scholar 

  11. P.S. Kolhe, P.S. Shirke, N. Maiti, J. Inorg. Organomet. Polym. 29, 41–48 (2019)

    CAS  Google Scholar 

  12. D.R. Miller, S.A. Akbar, P.A. Morris, Sens. Actuators B Chem. 204, 250–272 (2014)

    CAS  Google Scholar 

  13. A. Baral, L. Satish, G. Zhang, J. Inorg. Organomet. Polym. 31, 899–922 (2021)

    CAS  Google Scholar 

  14. T.R. Rashid, D.T. Phan, G.S. Chung, Sens. Actuators B Chem. 185, 777–784 (2013)

    CAS  Google Scholar 

  15. Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, F. Li, ACS Appl. Mater. Interface 4, 3797–3804 (2012)

    CAS  Google Scholar 

  16. L. Wang, S. Wang, M. Xu, X. Hu, H. Zhang, Y. Wang, W. Huang, Phys. Chem. Chem. Phys. 15, 17179–17186 (2013)

    CAS  PubMed  Google Scholar 

  17. A.A. Daryakenari, A. Apostoluk, J.J. Delaunay, Phys. Stat. Solid. C 10, 1297–1300 (2013)

    CAS  Google Scholar 

  18. S. Bai, S. Chen, Y. Zhao, T. Guo, R. Luo, D. Li, J. Mater. Chem. A Mater. Energy Sustain. 2, 16697–16706 (2014)

    CAS  Google Scholar 

  19. N.H. Al-Hardana, M.J. Abdullah, A. Abdul Aziz, Appl. Surf. Sci. 270, 480–485 (2013)

    Google Scholar 

  20. M.H. Darvishnejad, A.A. Firooz, J. Beheshtian, A.A. Khodadadi, RSC Adv. 6, 7838–7845 (2016)

    CAS  Google Scholar 

  21. Y.S. Shim, H.G. Moon, D.H. Kim, L. Zhang, S.J. Yoon, Y.S. Yoon, C.Y. Kang, H.W. Jang, RSC Adv. 3, 10452–10459 (2013)

    CAS  Google Scholar 

  22. G. Korotcenkov, Sens. Actuators B Chem. 107, 209–232 (2005)

    CAS  Google Scholar 

  23. R. Yoo, S. Cho, M.J. Song, W. Lee, Sens. Actuators B Chem. 221, 217–223 (2015)

    CAS  Google Scholar 

  24. R. Yoo, D. Lee, S. Cho, W. Lee, Sens. Actuators B Chem. 254, 1242–1248 (2018)

    CAS  Google Scholar 

  25. A. Mirzaei, S.S. Kim, H.W. Kim, J. Hazard. Mater. 357, 314–333 (2018)

    CAS  PubMed  Google Scholar 

  26. S. Ashrafi, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, A. Asghari, Int. J. Hydrogen Energy 45, 21611–21624 (2020)

    CAS  Google Scholar 

  27. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Ceram. Int. 46, 17186–17196 (2020)

    CAS  Google Scholar 

  28. S. Park, J.M. Vohs, R.J. Gorate, Nature 404, 265 (2000)

    CAS  PubMed  Google Scholar 

  29. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 5812–5821 (2015)

    CAS  Google Scholar 

  30. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, J. Mater. Sci.: Mater. Electron. 31, 17332–17338 (2020)

    Google Scholar 

  31. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, M. Salavati-Niasari, Ultrason. Sonochem. 71, 105376 (2021)

    CAS  PubMed  Google Scholar 

  32. S. Zinatloo-Ajabshir, M. Baladi, O. Amiri, M. Salavati-Niasari, Sep. Purif. Technol., 248, 117062 (2020)

  33. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 5043–5051 (2015)

    CAS  Google Scholar 

  34. N.L. Wu, S.V. Wagh, I.A. Rusakova, Science 285, 1375 (1999)

    CAS  PubMed  Google Scholar 

  35. B.M. Latha, V. Sadasivam, B. Sivasankar, J. Catal. Commun. 8, 1070 (2007)

    CAS  Google Scholar 

  36. A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, Nature 400, 340–342 (1999)

    CAS  Google Scholar 

  37. H. Martinho, N. Moreno, J. Sanjurjo, C. Rettori, A.J. Garcia-Adeva, D.L. Huber, Phys. Rev. B. 2, 64 (2001)

    Google Scholar 

  38. B.N. Kim, K. Hiraga, K. Morita, Y. Sakka, Nature 413, 288–91 (2001)

    CAS  PubMed  Google Scholar 

  39. A. Abbasi, J.J. Sardroodi, J. Nanostruct. Chem. 7, 345–358 (2017)

    CAS  Google Scholar 

  40. Y.Z. Mao, S.Y. Ma, W.Q. Li, J. Luo, L. Cheng, D.J. Gengzang, X.L. Xu, Mater. Lett. 157, 151–154 (2015)

    CAS  Google Scholar 

  41. O. Długosz, M. Banach, J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00387-9

    Article  Google Scholar 

  42. M. Hjiri, F. Bahanan, M.S. Aida, J. Inorg. Organomet. Polym. 30, 4063–4071 (2020)

    CAS  Google Scholar 

  43. A. Tiwari, M. Prabaharan, R.R. Pandey, J. Inorg. Organomet. Polym. 20, 380–386 (2010)

    CAS  Google Scholar 

  44. A. Abbasi, J.J. Sardroodi, J. Nanostruct. Chem. 7, 121–132 (2017)

    CAS  Google Scholar 

  45. K. Govardhan, A. Grace, Sens. Lett. 14, 741–750 (2016)

    Google Scholar 

  46. A. Abbasi, A.H. Keihan, G.M. Ahmadi, M. Rahimi-Nasrabadi, H. Khojasteh, J. Nanostruct. 10(3), 518–530 (2020)

    CAS  Google Scholar 

  47. V.A. Soares, M.J.S. Xavier, E.S. Rodrigues, C.A. de Oliveira, P.M.A. Farias, A. Stingl, N.S. Ferreira, M.S. Silva, Mater. Lett. 259, 126853 (2020)

  48. Z. Xiaojun, Y. Haitang, W. Pengfei, H. Xiaozhong, W. Xiaofeng, RSC Adv. 9, 14893–14898 (2019)

    Google Scholar 

  49. R. Tholkappiyan, H. Fathalla, Mater. Res. Bull. 95, 104–114 (2017)

    Google Scholar 

  50. S.H. Sharifi, H. Shoja, J. Water Environ. Nanotechnol. 3(2), 157–172 (2018)

    CAS  Google Scholar 

  51. P.S. Kolhe, A.B. Shinde, S.G. Kulkarni, N. Maiti, P.M. Koinkar, K.M. Sonawane, J. Alloys Compd. 748, 6–11 (2018)

    CAS  Google Scholar 

  52. C.H. Liu, L. Zhang, Y.J. He, Thin Solid Films 304, 13 (1997)

    CAS  Google Scholar 

  53. M.S. Tong, G.R. Dai, D.S. Gao, Vacuum 59, 877 (2000)

    CAS  Google Scholar 

  54. R.P. Patil, P.V. More, G.H. Jain, P.K. Khanna, V.B. Gaikwad, Vacuum 146, 445–461 (2018)

    Google Scholar 

  55. T. Huiling, D. Zaihua, W. Yang, W. Si, J. Yadong, ACS Appl. Mater. Interfaces 12(28), 31037–31053 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borhade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borhade, A.V., Bobade, V.D., Tope, D.R. et al. A Highly Selective and Sensitive H2S Gas Sensor Based on Novel Nanostructure Core–Shell FeCr2O4@ZnO@MgO. J Inorg Organomet Polym 31, 4670–4683 (2021). https://doi.org/10.1007/s10904-021-02072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02072-4

Keywords

Navigation