Skip to main content
Log in

Condensation of Organoyttriumoxanalumoxanes with Chromium Acetylacetonate

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The process of organoyttriumoxanealumoxanes co-condensation with chromium acetylacetonate has been studied, as a result chromium-containing organoyttriumoxanealumoxanes were obtained, which are ceramic-forming oligomers and may have fiber-forming properties. Their physicochemical characteristics have been determined by NMR, IR spectroscopy, SEM, TGA, XRD and elemental analysis. It has been found that when the molar ratio of chromium-containing organoyttriumoxanealumoxanes is Al/Y ≈ 2 and Al/Cr ≈ 180 they have fiber-forming properties. Polymer fibers were produced from chromium-containing organoyttriumoxanealumoxanes by melt spinning. The process of thermochemical transformation of synthesized chromium-containing organoyttriumoxanealumoxanes into the ceramic phase has been studied. It is found out that the pyrolysis of chromium-containing organoyttriumoxanealumoxanes leads to the formation of Y3(CrxAl1−x)5O12, YAlyCr1-yO3 and α-(Al2−xCrxO3). That is, these oligomers can be used to create a new generation of heatresistant, optically-transparent, corrosion—and radiation-resistant multicomponent ceramics based on aluminum, yttrium and chromium oxides.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 2
Fig. 17

Similar content being viewed by others

References

  1. Z. Shen, A. Ekstrand, M. Nygren, Oxide/oxide composites in the system Cr2O3-Y2O3-Al2O3. J. Eur. Ceram. Soc. 20, 625–630 (2000). https://doi.org/10.1016/s0955-2219(99)00261-7

    Article  CAS  Google Scholar 

  2. X. Zhou, X. Luo, B. Wu, S. Jiang, L. Li, X. Luo, Y. Pang, The broad emission at 785 nm in YAG:Ce3+, Cr3 + phosphor. Spectrochim Acta Pt A 190, 76–80 (2018). https://doi.org/10.1016/j.saa.2017.09.011

    Article  CAS  Google Scholar 

  3. K.M. Kinsman, J. McKittrick, E. Sluzky, K. Hesse, Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAC:Cr) phosphors. J. Am. Ceram. Soc. 77(11), 2866–2872 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04516.x

    Article  CAS  Google Scholar 

  4. Y.-P. Fu, S. Tsao, C.-T. Hu, Preparation of Y3Al5O12:Cr Powders by microwave-induced combustion process and their luminescent properties. J. Alloys Compd. 395, 227–230 (2005). https://doi.org/10.1016/j.jallcom.2004.10.071

    Article  CAS  Google Scholar 

  5. S.R. Naik, T. Shripathi, A.V. Salker, Preparation, characterization and photoluminescent studies of Cr and Nd co-doped Ce:YAG compounds. J Lumin 161, 335–342 (2015). https://doi.org/10.1016/j.jlumin.2015.01.040

    Article  CAS  Google Scholar 

  6. L. Marciniak, A. Bednarkiewicz, J. Drabik, K. Trejgis, W. Strek, Optimization of highly sensitive YAG:Cr3+, Nd3+ nanocrystals-based luminescent thermometer operating in optical window of biological tissues. Phys. Chem. Chem. Phys. 19(10), 7343–7351 (2017). https://doi.org/10.1039/C6CP07213E

    Article  CAS  PubMed  Google Scholar 

  7. K. Drdlikova, R. Klement, D. Drdlik, D. Galusek, K. Maca, Processing and properties of luminescent Cr3+ doped transparent alumina ceramics. J. Eur. Ceram. Soc. 40(7), 2573–2580 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.010

    Article  CAS  Google Scholar 

  8. W. Guo, J. Huang, Y. Lin, Q. Huang, B. Fei, J. Chen, W. Wang, F. Wang, C. Ma, X. Yuan, Y. Cao, A low viscosity slurry system for fabricating chromium doped yttrium aluminum garnet (Cr:YAG) transparent ceramics. J. Eur. Ceram. Soc. 35(14), 3873–3878 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.06.013

    Article  CAS  Google Scholar 

  9. B. Fei, W. Guo, J. Huang, Q. Huang, J. Chen, J. Li, W. Chen, G. Zhang, Y. Cao, Spectroscopic properties and energy transfers in Cr, Tm, Ho triple-doped Y3Al5O12 transparent ceramics. Opt. Mater. Express 3(12), 2037–2044 (2013). https://doi.org/10.1364/OME.3.002037

    Article  CAS  Google Scholar 

  10. L. Zhang, J. Feng, W. Pan, Vacuum sintering of transparent Cr:Y2O3 ceramics. Ceram. Int. 41(7), 8755–8760 (2015). https://doi.org/10.1016/j.ceramint.2015.03.098

    Article  CAS  Google Scholar 

  11. E. Stobierska, M.M. Bućko, J. Lis, K. Kuźmińska, Colour properties of Y2O3–Al2O3–Cr2O3 pigments as a result of precursors morphology. AST 68, 202–207 (2010).

    Article  CAS  Google Scholar 

  12. M.M. Buko, E. Stobierska, J. Lis, B. Molasy, Pigments in the Y2O3–Al2O3–Cr2O3 system. Mater. Ceram. (Ceram Mater) 62(4), 577–581 (2010). https://doi.org/10.4028/www.scientific.net/AST.68.202

    Google Scholar 

  13. T.K. Parya, S. Banerjee, M.B. Sana, Densification of pure alpha alumina ceramics with chromia as dopant. J. Indian Chem. Soc. 89(4), 533–541 (2012)

    Google Scholar 

  14. B.K. Singh, B. Mondal, N. Mandal, Machinability evaluation and desirability function optimization of turning parameters for Cr2O3 doped zirconia toughened alumina (Cr-ZTA) cutting insert in high speed machining of steel. Ceram. Int. 42(2), 3338–3350 (2016). https://doi.org/10.1016/j.ceramint.2015.10.128

    Article  CAS  Google Scholar 

  15. X. Yang, C. Shao, Y. Liu, Fabrication of Cr2O3/Al2O3 composite nanofibers by electrospinning. J. Mater. Sci. 42(20), 8470–8472 (2007). https://doi.org/10.1007/s10853-007-1769-5

    Article  CAS  Google Scholar 

  16. S.C. Han, D.Y. Yoon, M.K. Brun, Migration of grain boundaries in alumina induced by chromia addition. Acta Met. Mater. 43(3), 977–984 (1995)

    Article  CAS  Google Scholar 

  17. E. Manor, Grain growth inhibition in nanocrystalline alumina doped with chromia. Nanostruct. Mater. 8(3), 359–66 ( )

  18. A. Towata, H. Hwang, M. Yasuoka, M. Sando, K. Niihara, Preparation of polycrystalline YAG/alumina composite fibers and YAG fiber by sol–gel method. Composite A 32(8), 1127–1131 (2001). https://doi.org/10.1016/s1359-835x(01)00014-8

    Article  Google Scholar 

  19. R.C. Pullar, M.D. Taylor, A.K. Bhattacharya, Effect of sodium on the creep resistance of yttrium aluminium garnet (YAG) fibres. J. Eur. Ceram. Soc. 26(9), 1577–1583 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.254

    Article  CAS  Google Scholar 

  20. M. Shojaie-Bahaabad, E. Taheri-Nassaj, R. Naghizadeh, An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: Preparation, rheological behavior and spinnability. Ceram Inter 34(8), 1893–1902 (2008). https://doi.org/10.1016/j.ceramint.2007.07.032

    Article  CAS  Google Scholar 

  21. M. Shojaie-Bahaabad, E. Taheri-Nassaj, R. Naghizadeh, Effect of yttria on crystallization and microstructure of an alumina–YAG fiber prepared by aqueous sol–gel process. Ceram. Int. 35(1), 391–396 (2009). https://doi.org/10.1016/j.ceramint.2007.11.010

    Article  CAS  Google Scholar 

  22. S. Pfeifer, M. Bischoff, R. Niewa, B. Clauß, M.R. Buchmeiser, Structure formation in yttrium aluminum garnet (YAG) fibers. J. Eur. Ceram. Soc. 34(5), 1321–1328 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.10.036

    Article  CAS  Google Scholar 

  23. H.J. Kim, G.E. Fair, A.M. Hart, S.A. Potticary, N.G. Usechak, R.G. Corns, R.S. Hay, Development of polycrystalline yttrium aluminum garnet (YAG) fibers. J. Eur. Ceram. Soc. 35(15), 4251–4258 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.07.011

    Article  CAS  Google Scholar 

  24. X. Ma, C. Wang, H. Tan, J. Nan, Z. Lv. Preparation and crystal activation energy of long yttrium aluminum garnet gel fibers. JSST 2016;80(1):226–232. https://doi.org/10.1007/s10971-016-4063-7

    Article  CAS  Google Scholar 

  25. M. Michálková, J. Kraxner, M. Micha´lek, D. Galusek, Preparation of translucent YAG glass/ceramic at temperatures below 900 ◦C. J. Eur. Ceram. Soc. 40(7), 2581–2585 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.011

    Article  CAS  Google Scholar 

  26. J. Chovanec, R. Svoboda, J. Kraxner, A. Černá, D. Galusek, Crystallization kinetics of the Y3Al5O12 glass. J. Alloys Compd. 725, 792–799 (2017). https://doi.org/10.1016/j.jallcom.2017.07.191

    Article  CAS  Google Scholar 

  27. A. Prnová, J. Valúchová, M. Parchovianský, W. Wisniewski, P. Švančárek, R. Klement, Ľ Hric. E. Bruneel, D. Galusek, Y3Al5O12-α-Al2O3 composites with fine-grained microstructure by hot pressing of Al2O3-Y2O3 glass microspheres. J. Eur. Ceram. Soc. 40(3), 852–860 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.017

    Article  CAS  Google Scholar 

  28. X. Ma, Z. Lv, H. Tan, J. Nan, C. Wang, X. Wang, Preparation and grain-growth of chromia-yttrium aluminum garnet composites fibers by sol–gel method. JSST 83(2), 275–280 (2017). https://doi.org/10.1007/s10971-017-4410-3

    Article  CAS  Google Scholar 

  29. G.A. Abakumov et Al., Organoelement chemistry: promising areas of growth and challenges. Russ. Chem. Rev. 87(5), 393–507 (2018). https://doi.org/10.1070/RCR4795 (429 – 37).

    Article  CAS  Google Scholar 

  30. G.I. Shcherbakova, P.A. Storozhenko, D.V. Zhigalov, M.S. Varfolomeev, N.B. Blokhina MKh, Kutinova, Metallocarbosilanes and elementoxanealuminoxanes as precursors of components of nanostructured ceramic composites. Russ. Chem. Bull. 69(5), 875–884 (2020). https://doi.org/10.1007/s11172-020-2844-1

    Article  CAS  Google Scholar 

  31. G.I. Shcherbakova, P.A. Storozhenko, T.L. Apukhtina, D.V. Zhigalov, M.S. Varfolomeev, A.I. Drachev, A.A. Ashmarin. Nanometallocarbosilanes and organoelementoxanes as precursors of components of promising ceramic composites. NMPT-4. IOP Conf. Series: Materials Science and Engineering 525 (2019) 012057. https://doi.org/10.1088/1757-899X/525/1/0120573

  32. M.S. Varfolomeev, V.S. Moiseev, G.I. Shcherbakova, N.S. Krivtsova, Yurkov, GYu. High-refractory ceramics based on alumina-yttria binders. Inorganic Materials. 2015; 51(7):722 – 27. https://doi.10.1134/S0020168515070183

  33. M.S. Varfolomeev, V.S. Moiseev, G.I. Shcherbakova. Perspective ceramic composite materials based on aluminum-yttrium binder composition. Journal of Physics: Conference Series, (2018) 1121, 012032. https://doi.org/10.1088/1742-6596/1121/1/012032

  34. G.I. Shcherbakova, P.A. Storozhenko, T.L. Apukhtina, M.S. Varfolomeev, M.G. Kuznetsova, A.I. Drachev, A.A. Ashmarin, Preceramic organomagnesiumoxanealumoxanes: synthesis, properties and pyrolysis. Polyhedron 135, 144–152 (2017). https://doi.org/10.1016/j.poly.2017.07.006

    Article  CAS  Google Scholar 

  35. A.A. Zabelina, G.I. Shcherbakova, P.P. Faikov, E.V. Zharikov, SiC composites containing carbon nanotubes and oxide additives based on organoelementoxanes. Preparation by spark plasma sintering. Ceram. Int. 46(3), 2786–2791 (2020). https://doi.org/10.1016/j.ceramint.2019.09.269

    Article  CAS  Google Scholar 

  36. G.I. Shcherbakova et al. Pat. RF 2668226 «Method of obtaining organometal oxane yttrium oxane aluminoxanes, binding and impregnation materials based thereon&#187

  37. G.I. Shcherbakova, P.A. Storozhenko, M.S. Varfolomeev, N.S. Blokhina MKh, Krivtsova, D.V. Zhigalov, A.A. Ashmarin. Al2O3 – Y2O3–Cr2O3 ceramics based on organochromiumoxane yttriumoxane alumoxanes. XV International Russian-Chinese Symposium “Advanced Materials and Processes” J Phys: Conf Ser 1347. (2019) 012050. https://doi.org/10.1088/1742-6596/1347/1/012050

  38. G.I. Shcherbakova, N.B. Kutinova, M.S. Varfolomeev, A.I. Drachev, M.G. Kuznetsova, P.A. Storozhenko. Organochromiumoxane yttriumoxane alumoxane oligomers: synthesis, properties, pyrolysis. Russ. Chem. Bull. 2020;69(8):1492–1502. https://doi.org/10.1007/s11172-020-2928-y

    Article  CAS  Google Scholar 

  39. G.I. Shcherbakova, P.A. Storozhenko, N.B. Kutinova, D.V. Sidorov, M.S. Varfolomeev, M.G. Kuznetsova, M.V. Polyakova, A.E. Chernyshev, A.I. Drachev, G.Y. Yurkov, Synthesis of yttrium-containing organoalumoxanes. Inorg. Mater. 48(10), 1058–1063 (2012). https://doi.org/10.1134/s002016851210010x

    Article  CAS  Google Scholar 

  40. G.I. Shcherbakova, T.L. Apukhtina, N.S. Krivtsova, M.S. Varfolomeev, D.V. Sidorov, P.A. Storozhenko, Fiber-forming organoyttroxanealumoxanes. Inorg. Mater. 51(3), 206–214 (2015). https://doi.org/10.1134/S0020168515030140

    Article  CAS  Google Scholar 

  41. P.W. Atkins, R.S. Friedman, Molecular quantum mechanics, fourth ed., Oxford University Press Inc., New York, 2005, pp. 326–331. ISBN: 9780195672510, 0195672518

  42. P.W. Atkins, R.S. Friedman. Molecular quantum mechanics, fourth ed., Oxford University Press Inc., New York, 2005, pp. 288–301. ISBN: 9780195672510, 0195672518

  43. HyperChem release 6.01 for Windows, Molecular Modeling System, user: Evaluation Copy, organization: Evaluation Copy, dealer: Copyright 2000 Hypercube, Inc

  44. G.I. Shcherbakova, M.K. Shaukhin, A.D. Kirilin, P.A. Storozhenko, A.S. Pokhorenko, Quantum-chemical calculation of alkoxy(hydroxy)(ethylacetoacetate)alumoxane geometry. Russ. J. Gen. Chem. 91(2), 235–240 (2021). https://doi.org/10.1134/S1070363221020122

    Article  CAS  Google Scholar 

  45. B.D. Fahlman, S.G. Bott, A.R. Barron, Molecular structure of Al0.916Cr0.084(acac)3. J. Chem. Crystallogr. 30(1), 65–67 (2000). https://doi.org/10.1023/A:1009554301560

    Article  CAS  Google Scholar 

  46. G.I. Shcherbakova, M.K. Shaukhin, A.D. Kirilin, P.A. Storozhenko, Features of the molecular structure of organochromiumoxane yttriumoxane alumoxane oligomers. Russ Chem Bull 2021;70(7) (In Press r07_7458)

  47. B. Zhang, F. Sun, Q.L. Zhou, D.M. Liao, N. Wang, L.H. Xue, H.P. Li, Y.W. Yan, First-principles investigation on stability and mobility of hydrogen in α-Al2O3 (0001)/α-Cr2O3 (0001) interface. Fusion Eng. Des. 125:577–581 (2017)

Download references

Acknowledgements

This work was supported by the russian foundation for basic research, project no. 17-03-00331 a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina I. Shcherbakova.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakova, G.I., Shaukhin, M.K., Kutinova, N.B. et al. Condensation of Organoyttriumoxanalumoxanes with Chromium Acetylacetonate. J Inorg Organomet Polym 31, 3460–3480 (2021). https://doi.org/10.1007/s10904-021-02026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02026-w

Keywords

Navigation