Skip to main content
Log in

Magnetic Field-Assisted Laser Ablation of Titanium Dioxide Nanoparticles in Water for Anti-Bacterial Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Titanium oxide nanoparticles (TiO2) were produced by pulsed Nd:YAG laser ablation in water under the effect of an external magnetic field. Various techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy Dispersive X-ray (EDX), transmission electron microscopy (TEM), UV–Vis spectroscopy, and Raman spectroscopy were used to characterize the TiO2 nanoparticles. The XRD analysis of titanium oxide nanoparticles revealed that the synthesized nanoparticles were polycrystalline with mixed of tetragonal anatase and rutile TiO2. Scanning electron microscope shows the formation of spherical nanoparticles and the particles agglomeration decreases and the particle size from increases from 25 to 35 nm when the magnetic field applied. The optical energy gap of TiO2 nanoparticles decreased from 4.6 to 3.4 eV after using the magnetic field during the ablation. Raman studies show the existence of five vibration modes belong to TiO2. The antibacterial effect assay revealed a largest inhibition zone in S. aureus and E. coli, with a more potent effect for TiO2 NPs prepared by magnetic field when compared with that prepared without presence of magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Shi et al., Photocatalytic degradation of rhodamine B dye with MWCNT/TiO2/C60 composites by a hydrothermal method. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26(1), 65–69 (2011)

    Article  CAS  Google Scholar 

  2. F. Barreca, N. Acacia, E. Barletta, D. Spadaro, G. Curro, F. Neri, Titanium oxide nanoparticles prepared by laser ablation in water. Radiat. Eff. Def. Solids 165, 573–578 (2010)

    Article  CAS  Google Scholar 

  3. M. Malekshahi Byranvand, A. Nemati Kharat, L. Fatholahi, Z. Malekshahi Beiranvand, A review on synthesis of nano-TiO2 via different methods. J. Nanostruct. 3(1), 1–9 (2013)

    Google Scholar 

  4. A. Bahrami, R. Delshadi, E. Assadpour, S.M. Jafari, L. Williams, Antimicrobial-loaded nanocarriers for food packaging applications. Adv. Coll. Interface Sci. 278, 102140 (2020)

    Article  CAS  Google Scholar 

  5. M. Yousefi, A. Ehsani, S.M. Jafari, Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Adv. Coll. Interface Sci. 270, 263–277 (2019)

    Article  CAS  Google Scholar 

  6. K.S. Khashan, G.M. Sulaiman, S.A. Hussain, T.R. Marzoog, M.S. Jabir, Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles. J. Inorg. Organomet. Polym. Mater. 30, 3677–3693 (2020)

    Article  CAS  Google Scholar 

  7. K.S. Khashan, G.M. Sulaiman, F.A.K. AbdulAmeer, G. Napolitano, Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pak. J. Pharm. Sci. 29(2), 541–546 (2016)

    CAS  PubMed  Google Scholar 

  8. G.M. Sulaiman, A.T. Tawfeeq, M.D. Jaaffer, Biogenic synthesis of copper oxide nanoparticles using Olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Biotechnol. Prog. 34(1), 218–230 (2018)

    Article  CAS  Google Scholar 

  9. K.S. Khashan, G.M. Sulaiman, S.A. Hussain, T.R. Marzoog, M.S. Jabir, Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles. J. Inorg. Organomet Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01522-9

    Article  Google Scholar 

  10. R.A. Ismail, G.M. Sulaiman, S.A. Abdulrahman, T.R. Marzoog, Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C 53, 286–297 (2015)

    Article  CAS  Google Scholar 

  11. P. Russo, R. Liang, R.X. He, Y.N. Zhou, Phase transformation of TiO2 nanoparticles by femtosecond laser ablation in aqueous solutions and deposition on conductive substrates. Nanoscale 9(18), 6167–6177 (2017)

    Article  CAS  Google Scholar 

  12. L. Chiodo, M. Salazar, A. Romero, S. Laricchia, F. Sala, A. Rubio, Structure, electronic, and optical properties of TiO2 atomic clusters: an ab initio study. J. Chem. Phys. 135, 244704 (2011)

    Article  Google Scholar 

  13. A. Hernández, W. Hernández, A. Cid, J. García, M. Villanueva, Prediction, and physic-chemical properties of (TiO2)n n = 15–20 clusters and their possible catalytic application: A DFT study. Comput. Mater. Sci. 162, 228–235 (2019)

    Article  Google Scholar 

  14. M. Salazar-Villanueva, A. Hernandez, J. Briones, E. Anota, F. Carrillo, Influence of doping on chain-like TiO2 clusters: a DFT study. Curr. Appl. Phys. 16, 197–206 (2016)

    Article  Google Scholar 

  15. Y. Song, Y. Yang, C.J. Medforth, E. Pereira, A.K. Singh, H. Xu, Y. Jiang, C.J. Brinker, F. van Swol, J.A. Shelnutt, Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 126(2), 635–645 (2004)

    Article  CAS  Google Scholar 

  16. A. Singh, J. Vihinen, E. Frankberg, L. Hyvarinen, M. Honkanen, E. Levanen, Pulsed laser ablation-induced green synthesis of TiO2 nanoparticles and application of novel small angle X-ray scattering technique for nanoparticle size and size distribution analysis. Nanoscale Res. Lett. 11(1), 1–9 (2016)

    Article  Google Scholar 

  17. G. Colon, M.C. Hidalgo, J.A. Navio, A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive. Catal. Today 76(2–4), 91–101 (2002)

    Article  CAS  Google Scholar 

  18. V.A. Shakhatov, O.A. Gordeev, Thin film deposition by means of laser ablation of titanium oxide targets in oxygen radiofrequency electrode plasma. High Energy Chem. 42(2), 141–144 (2008)

    Article  CAS  Google Scholar 

  19. E. Solati, Z. Aghazadeh, D. Dorranian, Effects of liquid ablation environment on the characteristics of TiO2 Nanoparticles. J. Clust. Sci. 31(5), 961–969 (2020)

    Article  CAS  Google Scholar 

  20. A. Nath, S.S. Laha, A. Khare, Synthesis of TiO2 nanoparticles via laser ablation at titanium-water interface. Integ. Ferro. 121(1), 58–64 (2010)

    Article  CAS  Google Scholar 

  21. N. Attan, H. Nur, J. Efendi, H.O. Lintang, S.L. Lee, I. Sumpono, Well-aligned titanium dioxide with very high length-to-diameter ratio synthesized under magnetic field. Chem. Lett. 41(11), 1468–1470 (2012)

    Article  CAS  Google Scholar 

  22. K.H. Jawad, B.A. Hasoon, N.N. Hussein, Biological application of titanium dioxide nanoparticles prepared through laser ablation in liquid. Drug Invent. Today 12, 10 (2019)

    Google Scholar 

  23. E. Giorgetti, M.M. Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, F. Giammanco, TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase. J. Alloy Compd. 643, S75–S79 (2015)

    Article  CAS  Google Scholar 

  24. E.P. Meagher, G.A. Lager, Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structures of rutile and brookite at high temperature. Can. Mineral. 17, 77–85 (1979)

    CAS  Google Scholar 

  25. H. Seki, N. Ishizawa, N. Mizutani, M. Kato, High temperature structures of the rutile-type oxides, TiO2 and SnO2. Yogyo Kyokai Shi. J. Ceram. Assoc. Jpn. 92, 219 (1984)

    Article  CAS  Google Scholar 

  26. C. Ma, O. Tschauner, J.R. Beckett, G.R. Rossman, W. Liu, Panguite (Ti4+, Sc, Al, Mg, Zr, Ca)1.8 O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD. Am. Miner. 97, 1219–1225 (2012)

    Article  CAS  Google Scholar 

  27. M. Fusi, V. Russo, C.S. Casari, A.L. Bassi, C.E. Bottani, Titanium oxide nanostructured films by reactive pulsed laser deposition. Appl. Surf. Sci. 255(10), 5334–5337 (2009)

    Article  CAS  Google Scholar 

  28. J. Philip, P.D. Shima, B. Raj, Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19, 305706 (2008)

    Article  Google Scholar 

  29. R.A. Ismail, A.M. Mousa, K.S. Khashan, M.H. Mohsin, M.K. Hamid, Synthesis of PbI2 nanoparticles by laser ablation in methanol. J. Mater. Sci. 27(10), 10696–10700 (2016)

    CAS  Google Scholar 

  30. J. Zhang, P. Zhou, P. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)

    Article  CAS  Google Scholar 

  31. R.A. Ismail, K.I. Hassan, O.A. Abdulrazaq, W.H. Abode, Optoelectronic properties of CdTe/Si heterojunction prepared by pulsed Nd: YAG-laser deposition technique. Mater. Sci. Semicond. Process. 10(1), 19–23 (2007)

    Article  CAS  Google Scholar 

  32. E.T. Salim, R.A. Ismail, H.T. Halbos, Growth of Nb2O5 film using hydrothermal method: effect of Nb concentration on physical properties. Mater. Res. Express 6, 116429 (2019)

    Article  CAS  Google Scholar 

  33. R.A. Ismail, Improved characteristics of sprayed CdO films by rapid thermal annealing. J. Mater. Sci. 20, 1219 (2009)

    CAS  Google Scholar 

  34. R.A. Ismail, F.A. Fadhil, Effect of electric field on the properties of bismuth oxide nanoparticles prepared by laser ablation in water. J. Mater. Sci. 25, 1435–1440 (2014)

    CAS  Google Scholar 

  35. R.A. Ismail, G.M. Sulaiman, S.A. Abdulrahman, Preparation of iron oxide nanoparticles by laser ablation in DMF under effect of external magnetic field. Int. J. Mod. Phys. B 30(206), 1650094 (2016)

    Article  CAS  Google Scholar 

  36. R.A. Ismail, K.S. Khashan, R.O. Mahdi, Characterization of high photosensitivity nanostructured 4H-SiC/p-Si heterostructure prepared by laser ablation of silicon in ethanol. Mater. Sci. Semicond. Process. 68, 252–261 (2017)

    Article  CAS  Google Scholar 

  37. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, P. Wojciechowski, Dielectric properties and characterization of titanium dioxide obtained by different chemistry methods. J. Nanomater. (2014). https://doi.org/10.1155/2014/124814

    Article  Google Scholar 

  38. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017)

    Article  CAS  Google Scholar 

  39. J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. (2018). https://doi.org/10.1155/2018/1062562

    Article  PubMed  PubMed Central  Google Scholar 

  40. O.A. Rugaie et al., Gold nanoparticles and graphene oxide flakes synergistic partaking in cytosolic bactericidal augmentation: role of ROS and NOX2 activity. Microorganisms 9(1), 101 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raid A. Ismail.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahjat, H.H., Ismail, R.A., Sulaiman, G.M. et al. Magnetic Field-Assisted Laser Ablation of Titanium Dioxide Nanoparticles in Water for Anti-Bacterial Applications. J Inorg Organomet Polym 31, 3649–3656 (2021). https://doi.org/10.1007/s10904-021-01973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01973-8

Keywords

Navigation