Skip to main content
Log in

Influence of Optimization Techniques on Wire Electrical Discharge Machining of Ti–6Al–2Sn–4Zr–2Mo Alloy using Modeling Approach

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nowadays, the Wire Electrical Discharge Machining (WEDM) process was also working to cut the hard titanium alloys. During the WEDM, the generation of high temperatures was used to melt and vaporize and also flushed away the hard titanium alloy. The tough Ti–6Al–2Sn–4Zr–2Mo alloy was machined in the current research by the WEDM method and machining features such as surface roughness (SR) and Material Removal Rate (MRR) were statistically evaluated to achieve optimum performance. The investigations were performed using the Taguchi orthogonal array technique. The optimum process factors were defined from the main effect plot 32 μs, 3 m/min, and 12 g for material removal rate and as 10 μs, 32 μs, 7 m/min, and 12 g for surface roughness. The best essential parameters were established from the Analysis of variance (ANOVA) analysis. The pulse on-time current and pulse off time were identified as important parameters for the material removal rate with a contribution of 23.60%, 5.91%, and 65.02%. The best essential parameters for surface roughness were pulse on time, pulse off time, and a combination of pulse on-time and pulse off time with a percentage contribution of 22.71% and 36.88% respectively.Moreover, the machined surface was examined using the Scanning Electron Microscope (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.B. Moulton, Wire EDM, the Fundamentals (EDM Network, Sugar Grove, 1999).

    Google Scholar 

  2. G. Lütjering, J.C. Williams, Titanium, 2nd edn. (Springer-Verlag, Berlin, 2007), pp. 50–52

    Google Scholar 

  3. S.S. Mohapatra, A. Patnaik, Optimization of WEDM processparameters using Taguchi method. Int. J. Adv. Manuf. Technol. 34, 911–925 (2007)

    Article  Google Scholar 

  4. C. Camposeco-Negrete, Prediction and optimization of machining time and surface roughness of AISI O1 tool steel in wire-cutEDM using robust design and desirability approach. Int. J. Adv. Manuf. Technol. 103(5–8), 2411–2422 (2019). https://doi.org/10.1007/00170-019-03720-3

    Article  Google Scholar 

  5. K. Raju, M. Balakrishnan, Experimental study and analysis ofoperating parameters in wire EDM process of aluminium metalmatrix composites. Mater. Today 22, 869–873 (2020). https://doi.org/10.1016/j.matpr.2019.11.036

    Article  CAS  Google Scholar 

  6. J. Lapin, TiAl-based alloys: present status and future perspectives, in: Proceedings of the 18th International Metallurgical & Materials Conference Proceedings (2009), pp. 1–12

  7. T. Voisin, J.-P. Monchoux, M. Hantcherli, S. Mayer, H. Clemens, A. Couret, Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering. Acta Mater. 73, 107–115 (2014)

    Article  CAS  Google Scholar 

  8. 6242 Titanium Material Property Data heet. http://www.suppliersonline.com/propertypages/6-2-4-2-.1.asp, (2015)

  9. M.J. Donachie, Titanium a Technical Guide, 2nd edn. (ASM International, Materials Park, OH, 2000).

    Book  Google Scholar 

  10. C. Quesne, A comparative study of creep resistance and thermal stability of titanium alloys 685 and 6242 in air and in vacuum. J. Less-Commun. Met. 68(133), 142 (1979)

    Google Scholar 

  11. B. Sefer, Ph.D. Thesis, Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Sweden (2014)

  12. R. Magabe, N. Sharma, K. Gupta, J.P. Dawim, Modeling and optimization of Wire-EDM parameters for machining of Ni558Ti shape memory alloy using hybrid approach of Taguchi and NSGA-II. Int. J. Adv. Manuf. Technol. 102, 1703–1717 (2019). https://doi.org/10.1007/s00170-019-03287-z

    Article  Google Scholar 

  13. K.S. Chan, M. Koike, B.W. Johnson, T. Okabe, Modeling of alpha-case formation and its effects on the mechanical properties of titanium alloy castings. Metall. Mater. Trans. A 39, 171–180 (2008)

    Article  Google Scholar 

  14. C. Leyens, M. Peters, D. Weinem, W.A. Kaysser, Influence of long-term annealing on tensile properties and fracture of near-α titanium alloy Ti-6Al-2.75 Sn-4Zr-0.4 Mo-0.45 Si. Metall. Mater. Trans. A 27, 1709–1717 (1996)

    Article  Google Scholar 

  15. A. Pilchak, W. Porter, R. John, Room temperature fracture processes of a near-α titanium alloy following elevated temperature exposure. J. Mater. Sci. 47, 7235 (2012)

    Article  CAS  Google Scholar 

  16. R. Gaddam, M.-L. Antti, R. Pederson, Influence of alpha-case layer on the low cycle fatigue properties of Ti-6Al-2Sn-4Zr-2Mo alloy. Mater. Sci. Eng. A 599, 51 (2014)

    Article  CAS  Google Scholar 

  17. K. Rajmohan, A.S. Kumar, Experimental investigation and prediction of optimum process parameters of micro-wire-cut EDM of 2205 DSS. Int. J. Adv. Manuf. Technol. 93, 187–201 (2017). https://doi.org/10.1007/s00170-016-8615-3

    Article  Google Scholar 

  18. S.K. Gauri, S. Chakraborty, Optimisation of multiple responses for WEDM processes using weighted principal components. Int. J. Adv. Manuf. Technol. 40, 1102–1110 (2009). https://doi.org/10.1007/s00170-008-1429-1

    Article  Google Scholar 

  19. F. Klocke, D. Welling, A. Klink, D. Veselovac, T. Nöthe, R. Perez, Evaluation of advanced wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Proc. CIRP 14, 430–435 (2014). https://doi.org/10.1016/j.procir.2014.03.039

    Article  Google Scholar 

  20. A. Perumal, A. Azhagurajan, S. Baskaran, R. Prithivirajan, P. Narayanasamy, Statistical evaluation and performance analysis of electrical discharge machining (EDM) characteristics of hard Ti-6Al-2Sn-4Zr-2Mo alloy. Mater. Res. Express 6(5), 056552 (2019). https://doi.org/10.1088/2053-1591/ab06da

    Article  CAS  Google Scholar 

  21. A. Perumal, A. Azhagurajan, R. Prithivirajan et al., Experimental investigation and optimization of process parameters in Ti – (6242) alpha-beta alloy using electrical discharge machining. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01786-1

    Article  Google Scholar 

  22. A. Perumal, A. Azhagurajan, S. Sureshkumar, R. Prithivirajan, C. Kailasanthan, A. JohnRajan, G. Venkatesan, P.R. Rajkumar, Experimental investigation on surface morphology and parametric optimization of Ti-6Al-2Sn-4Zr-2Mo alpha-beta alloy through AWJM. Tierarztl. Prax. 40, 1681–1703 (2020)

    Google Scholar 

  23. A. Perumal, C. Kailasanathan, B. Stalin, P.R. Rajkumar, T. Gangadharan, G. Venkatesan, Evaluation of EDM process parameters on titanium alloy through Taguchi approach. Mater. Today (2020). https://doi.org/10.1016/j.matpr.2020.10.737

    Article  Google Scholar 

  24. A. JohnRajan, C. Kailasanthan, B. Stalin, T. Gangadharan, P.R. Rajkumar, A. Perumal, Optimization of mould sand properties by mixing of granite powder using Taguchi method. Mater. Today (2020). https://doi.org/10.1016/j.matpr.2020.10.231

    Article  Google Scholar 

  25. S. Baskaran, V. Anandakrishnan, M. Duraiselvam, Investigations on dry sliding wear behavior of in situ casted AA7075–TiC metal matrix composites by using Taguchi technique. Mater. Des. 60, 184–192 (2014). https://doi.org/10.1016/j.matdes.2014.03.074

    Article  CAS  Google Scholar 

  26. A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, X.P. Cui, Hot working of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar a + b starting structure using processing map. Mater. Des. 30(5), 1625-1631 14 (2009)

    Article  CAS  Google Scholar 

  27. P.R. Rajkumar, C. Kailasanathan, A. Senthilkumar, N. Selvakumar, A. JohnRajan, Study on formability and strain hardening index: influence of particle size of boron carbide (B4C) in magnesium matrix composites fabricated by powder metallurgy technique. Mater. Res. Express 7(1), 016597 (2020)

    Article  CAS  Google Scholar 

  28. L.J. Huang, L. Geng, A.B. Li, X.P. Cui, H.Z. Li, G.S. Wang, Characteristics of hot compression behavior of Ti-6.5Al-3.5Mo1.5Zr-0.3Si alloy with an equiaxed microstructure. Mater. Sci. Eng. A 505(1–2), 136-143 15 (2009)

    Article  Google Scholar 

  29. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure. Mater. Sci. Eng. A 325(1–2), 112–125 (2002)

    Article  Google Scholar 

  30. K.T. Rie, T. Stucky, R.A. Silva, E. Leitao, Plasma surface treatment and PACVD on Ti alloys for surgical implants. Surf. Coat. Technol. 74–75, 973 (1995)

    Google Scholar 

  31. T. Bell, W. Bergman, J. Lanagan, P.H. Morton, A.M. Staines, Surface engineering of titanium with nitrogen. Surf. Eng. 2, 133 (1986)

    Article  Google Scholar 

  32. S.K. Wu, H.C. Lin, C.Y. Lee, Gas nitriding of an equiatomic TiNi shape memory alloy. Surf. Coat. Technol. 113, 13 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The staffs express their sincere thanks and thankfulness to Department of Mechanical Engineering at National Institute of Technology Tiruchirappalli for providing the facility of tools and equipment for doing the trial research work. The journalists also thank mechanical staffs for the support in running the trial work in the workshop of Mechanical Engineering Department of NIT, Tiruchirappalli.

Funding

This project funding was not received.

Author information

Authors and Affiliations

Authors

Contributions

AP: Writing—original draft, Formal analysis. AA: Conceptualization, Data curation, Supervision, SSK: Investigation, Methodology. RP: Project administration, Resources, Software. SB: Validation, Visualization. PRR: Editing, Data curation, Formal analysis. CK: Data curation, Formal analysis, Editing. GV: Data curation, Formal analysis.

Corresponding author

Correspondence to A. Perumal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to Participate

Additional informed consent was obtained from all individual participants for whom identifying information is included in this chapter.

Consent to Publish

The authors consent to publish this article in this journal if it is accepted.

Ethical Approval

The authors declare that any part of the work is copied from others and is an original research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perumal, A., Azhagurajan, A., Kumar, S.S. et al. Influence of Optimization Techniques on Wire Electrical Discharge Machining of Ti–6Al–2Sn–4Zr–2Mo Alloy using Modeling Approach. J Inorg Organomet Polym 31, 3272–3289 (2021). https://doi.org/10.1007/s10904-021-01953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01953-y

Keywords

Navigation