Skip to main content
Log in

Sorption Studies of Chromium(VI) onto Cerium/Ferroferric Oxide Composites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

To improve the adsorption capacities of ferroferric oxide (Fe3O4) for heavy metals, cerium/ferroferric oxide composites (Ce/Fe3O4) were prepared by a chemical coprecipitation method, and the adsorption capacity of chromium (Cr) from solution by Ce/Fe3O4 was studied. According to the TEM and SEM–EDS results, Ce was successfully doped on Fe3O4, the morphology of Ce/Fe3O4 was irregular and glossy, there were no obvious pores, and distinct boundaries were apparent. According to the XRD results, Ce/Fe3O showed high crystallinity. The crystal grain size of Ce/Fe3O4 was 27.9 nm. The results showed that Ce could increase the crystallinity and crystal size of Fe3O4. The results of batch adsorption experiments, including pH dependence, coexisting ion interference, adsorption kinetics and isotherms, showed that acidic conditions are more favorable than alkaline conditions for Ce/Fe3O4 to adsorb and remove Cr(VI). However, under acidic conditions, Cr(VI) exists in the form of HCrO4, and Cl, NO3 and SO42− existing in the solution compete with HCrO4 for adsorption. The adsorption process is mainly physical adsorption, and it can occur spontaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Martino, A. Holmes, S.S. Wise, H. Xie, J.P. Wise, The role of centrosomes in chemical carcinogenesis: hexavalent chromium induces aberrant centriole and centrosome separation and centrosome amplification. Toxicol. Lett. 259, S33 (2016)

    Google Scholar 

  2. B. Zhang, Y. Wu, Y. Fan, Synthesis of novel magnetic NiFe2O4nanocomposite grafted chitosan and the adsorption mechanism of Cr(VI). J. Inorg. Organomet. Polym. Mater. 29, 290–301 (2018)

    Google Scholar 

  3. M.S. Jabir, U.M. Nayef, W.K. Abdulkadhim, Z.J. Taqi, G.M. Sulaiman, U.I. Sahib, A.M. Al-Shammari, Y.-J. Wu, M. El-Shazly, C.-C. Su, Fe3O4 nanoparticles capped with peg induce apoptosis in breast cancer amj13 cells via mitochondrial damage and reduction of Nf-Κb translocation. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01791-4

    Article  Google Scholar 

  4. P. Srivastava, R. Abbassi, A. Kumar Yadav, V. Garaniya, N. Kumar, S.J. Khan, T. Lewis, Enhanced chromium(VI) treatment in electroactive constructed wetlands: influence of conductive material. J. Hazard. Mater. 387, 1–12 (2019)

    Google Scholar 

  5. S. Shoukat et al., Remediation of chromium(VI) and rhodamine 6G via mixed phase nickel-zinc nanocomposite: synthesis and characterization. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01776-3

    Article  Google Scholar 

  6. P. Gao, X. Chen, F. Shen, G. Chen, Removal of chromium(VI) from wastewater by combined electrocoagulation-electroflotation without a filter. Sep. Purif. Technol. 43, 117–123 (2005)

    CAS  Google Scholar 

  7. S.K. Mondal, P. Saha, Removal of hexavalent chromium from wastewater using supported liquid membrane: synthesis of chromium-iron complex through electrochemical reaction. Water. Environ. J. 34(S1), 753–771 (2020)

    CAS  Google Scholar 

  8. A. Scarselli, A. Binazzi, D.D. Marzio, A. Marinaccio, S. Iavicoli, Hexavalent chromium compounds in the workplace: assessing the extent and magnitude of occupational exposure in Italy. J. Occup. Environ. Hyg. 9, 398–407 (2012)

    CAS  PubMed  Google Scholar 

  9. R.A. Kearley, Properties of sodium chromate, sodium dichromate, and potassium dichromate, and their aqueous solutions. J. Chem. Eng. Data 9, 548–551 (1964)

    CAS  Google Scholar 

  10. J. Lou, C. Chang, Completely treating heavy metal laboratory waste liquid by an improved ferrite process. Sep. Purif. Technol. 57, 513–518 (2007)

    CAS  Google Scholar 

  11. S.A. Cavaco, S. Fernandes, M.M. Quina, L.M. Ferreira, Removal of chromium from electroplating industry effluents by ion exchange resins. J. Hazard. Mater. 144, 634–638 (2007)

    CAS  PubMed  Google Scholar 

  12. W. Wang, X.J. Wang, X. Wang, L.Z. Yang, Z. Wu, S.Q. Xia, J.F. Zhao, Cr(VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. J. Environ. Sci. China 25, 1726–1735 (2013)

    CAS  PubMed  Google Scholar 

  13. A.S.K. Kumar, S. Kalidhasan, V. Rajesh, N. Rajesh, Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. Ind. Eng. Chem. Res. 51, 58–69 (2011)

    Google Scholar 

  14. H.Y. Xiao, Z.H. Ai, L.Z. Zhang, Nonaqueous sol-gel synthesized hierarchical CeO2nanocrystal microspheres as novel adsorbents for wastewater treatment. J. Phys. Chem. C 113, 16625–16630 (2009)

    CAS  Google Scholar 

  15. H.X. Zhong, Y.L. Ma, X.F. Cao, X.T. Chen, Z.L. Xue, Preparation and characterization of flowerlike Y-2(OH)(5)NO3 center dot 1.5H(2)O and Y2O3 and their efficient removal of Cr(VI) from aqueous solution. J. Phys. Chem. C 113, 3461–3466 (2009)

    CAS  Google Scholar 

  16. Y.B. Yang, L.C. Zheng, T. Zhang, H.J. Yu, Y.R. Zhan, Y.F. Yang, H. Zeng, S.K. Chen, D. Peng, Adsorption behavior and mechanism of sulfonamides on phosphonic chelating cellulose under different pH effects. Bioresour. Technol. 288, 121510 (2019)

    PubMed  Google Scholar 

  17. N. Amirmahani, H. Mahdizadeh, M. Malakootian, A. Pardakhty, N.O. Mahmoodi, Evaluating nanoparticles decorated on Fe3O4@SiO2-Schiff base (Fe3O4@SiO2-Aptms-Hba) in adsorption of ciprofloxacin from aqueous environments. J. Inorg. Organomet. Polym. Mater. 30, 3540–3551 (2020)

    CAS  Google Scholar 

  18. A. Bilgi, A. Cimen, Removal of chromium(VI) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline. RSC. Adv. 9(64), 37403–37414 (2019)

    Google Scholar 

  19. S. Mitra, A. Sarkar, S. Sen, Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnol. Environ. Eng. 2, 11 (2017)

    Google Scholar 

  20. Y.L. Ding, F.T. Liu, Q.H. Jiang, B. Du, H.D. Sun, 12-Hydrothermal synthesis and characterization of Fe3O4nanorods. J. Inorg. Organomet. Polym. Mater. 23, 379–384 (2013)

    CAS  Google Scholar 

  21. H. Wang, Y. Lin, Y. Li, A. Dolgormaa, H. Fang, L. Guo, J. Huang, J. Yang, A novel magnetic Cd(II) ion-imprinted polymer as a selective sorbent for the removal of cadmium ions from aqueous solution. J. Inorg. Organomet. Polym. Mater. 29, 1874–1885 (2019)

    CAS  Google Scholar 

  22. A. Baykal, M. Senel, B. Unal, E. Karaoğlu, H. Sözeri, M.S. Toprak, Acid functionalized multiwall carbon nanotube/magnetite (MWCNT)-COOH/Fe3O4 hybrid: synthesis, characterization and conductivity evaluation. J. Inorg. Organomet. Polym. Mater. 23, 726–735 (2013)

    CAS  Google Scholar 

  23. Z.H. Dastgerdi, S.S. Meshkat, S. Hosseinzadeh, M.D. Esrafili, Application of novel Fe3O4–polyanilinenanocomposites in asphaltene adsorptive removal: equilibrium, kinetic study and DFT calculations. J. Inorg. Organomet. Polym. Mater. 29, 1160–1170 (2019)

    CAS  Google Scholar 

  24. M.H. Moghim, S.M. Zebarjad, Fabrication and structural characterization of multi-walled carbon nanotube/Fe3O4nanocomposite. J. Inorg. Organomet. Polym. Mater. 25, 1260–1266 (2015)

    CAS  Google Scholar 

  25. A. Zarei, S. Saedi, F. seidi, Synthesis and application of Fe3O4@SiO2@Carboxyl-terminated pamamdendrimernanocomposite for heavy metal removal. J. Inorg. Organomet. Polym. Mater. 28, 2835–2843 (2018)

    CAS  Google Scholar 

  26. L. Dong, D. Liu, H. Fu, X. Li, L. Shan, Synthesis and photocatalytic activity of Fe3O4–WO3–CQD multifunctional system. J. Inorg. Organomet. Polym. Mater. 29, 1297–1304 (2019)

    CAS  Google Scholar 

  27. B. Li, D. Jia, Y. Zhou, Q. HU, W. Cai, In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J. Magn. Magn. Mater. 306, 223–227 (2006)

    CAS  Google Scholar 

  28. S. Peng, H. Meng, Y. Ouyang, J. Chang, Nanoporous magnetic cellulose-chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 53, 2106–2113 (2014)

    CAS  Google Scholar 

  29. Z. Yu, X. Zhang, Y. Huang, Magnetic chitosan–iron(III) hydrogel as a fast and reusable adsorbent for chromium(VI) removal. Ind. Eng. Chem. Res. 52, 11956–11966 (2013)

    CAS  Google Scholar 

  30. P. Yin, Y. Deng, L. Zhang, N. Li, X. Feng, J. Wang, Y. Zhang, Facile synthesis and microwave absorption investigation of activated carbon@Fe3O4 composites in the low frequency band. RSC. Adv. 8, 23048–23057 (2018)

    CAS  Google Scholar 

  31. G. Zhang, J. Qu, H. Liu, A.T. Cooper, R. Wu, CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68, 1058–1066 (2007)

    CAS  PubMed  Google Scholar 

  32. S. Pirsa, F. Asadzadeh, I. KarimiSani, Synthesis of magnetic gluten/pectin/Fe3O4nano-hydrogel and its use to reduce environmental pollutants from lakeUrmia sediments. J. Inorg. Organomet. Polym. Mater. 30, 3188–3198 (2020)

    CAS  Google Scholar 

  33. N.C. Joshi, A. Gaur, A. Singh, Synthesis, characterisations, adsorptive performances and photo-catalytic activity of Fe3O4-SiO2 based nanosorbent (Fe3O4-SiO2Bn). J. Inorg. Organomet. Polym. Mater. 30, 4416–4425 (2020)

    CAS  Google Scholar 

  34. C. Doerenkamp, E. Carvajal, C.J. Magon, W.J.G.J. Faria, J.P. Donoso, Y. GalvãoGobato, A.S.S. de Camargo, H. Eckert, Composition–structure–property correlations in rare-earth-doped heavy metal oxyfluoride glasses. J. Phys. Chem. C 123, 22478–22490 (2019)

    CAS  Google Scholar 

  35. D. Zhai, Y. Shui, K. Feng, Y. Zhang, Effects of rare-earth oxides on the microstructure and properties of Fe-based friction materials synthesized by in situ carbothermic reaction from vanadium-bearing titanomagnetite concentrates. RSC. Adv. 9, 20687–20697 (2019)

    CAS  Google Scholar 

  36. R. Srivastava, Eco-friendly and morphologically-controlled synthesis of porous CeO2 microstructure and its application in water purification. J. Colloid. Interface. Sci. 348, 600–607 (2010)

    CAS  PubMed  Google Scholar 

  37. P. Liang, Y. Zhang, D.F. Wang, Y. Xu, L. Luo, Preparation of mixed rare earths modified chitosan for fluoride adsorption. J. Rare. Earth. 31, 817–822 (2013)

    CAS  Google Scholar 

  38. H. Paudyal, B. Pangeni, K. Inoue, H. Kawakita, K. Ohto, K.N. Ghimire, H. Harada, S. Alam, Adsorptive removal of trace concentration of fluoride ion from water by using dried orange juice residue. Chem. Eng. J. 223, 844–853 (2013)

    CAS  Google Scholar 

  39. V. Sivasankar, S. Murugesh, S. Rajkumar, A. Darchen, Cerium dispersed in carbon (Cedc) and its adsorption behavior: a first example of tailored adsorbent for fluoride removal from drinking water. Chem. Eng. J. 214, 45–54 (2013)

    CAS  Google Scholar 

  40. S.A. Wasay, M.J. Haran, S. Tokunaga, Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel. Water. Environ. Res. 68, 295–300 (1996)

    CAS  Google Scholar 

  41. N.M. Zúñiga-Muro, A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, J.C. Tapia-Picazo, Fluoride adsorption properties of cerium-containing bone char. J. Fluorine. Chem. 197, 63–73 (2017)

    Google Scholar 

  42. X.T. Lin, S.J. Li, H. He, Z. Wu, J.L. Wu, L.M. Chen, D.Q. Ye, M.L. Fu, Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl. Catal. B 223, 91–102 (2018)

    CAS  Google Scholar 

  43. Y. Seida, Y. Izumi, Synthesis of clay-cerium hydroxide conjugates for the adsorption of arsenic. Adsorpt. Sci. Technol. 23, 607–618 (2005)

    CAS  Google Scholar 

  44. H. Kavas, M. Gunay, A. Baykal, M.S. Toprak, H. Sozeri, B. Aktas, Negative permittivity of polyaniline-Fe3O4nanocomposite. J. Inorg. Organomet. Polym. Mater. 23, 306–314 (2013)

    CAS  Google Scholar 

  45. P. Zhang, S.D. Ouyang, P. Li, Z.Y. Sun, N.S. Ding, Y. Huang, Ultrahigh removal performance of lead from wastewater by tricalcium aluminate via precipitation combining flocculation with amorphous aluminum. J. Clean. Prod. 246, 118728 (2020)

    CAS  Google Scholar 

  46. J. Hu, G. Chen, I.M. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water. Res. 39, 4528–4536 (2005)

    CAS  PubMed  Google Scholar 

  47. Z. Razmara, E. Sanchooli, Hydrothermal synthesis of Co(II) complex, a precursor for the synthesis of octahedral Co3O4 nanoparticles : an active catalyst for the removal of Cr(VI). J. Inorg. Organomet. Polym. Mater. 29, 2090–2102 (2019)

    CAS  Google Scholar 

  48. T. Shi, Z. Wang, Y. Liu, S. Jia, D. Changming, Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J. Hazard. Mater. 161, 900–906 (2009)

    CAS  PubMed  Google Scholar 

  49. K.S. Tong, M.J. Kassim, A. Azraa, Adsorption of copper ion from its aqueous solution by a novel biosorbentuncariagambir: equilibrium, kinetics, and thermodynamic studies. Chem. Eng. J. 170, 145–153 (2011)

    CAS  Google Scholar 

  50. G. Wójcik, V. Neagu, I. Bunia, Sorption studies of chromium(VI) onto new ion exchanger with tertiary amine, quaternary ammonium and ketone groups. J. Hazard. Mater. 190, 544–552 (2011)

    PubMed  Google Scholar 

  51. M. Luo, H. Lin, B. Li, Y. Dong, Y. He, L. Wang, A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour. Technol. 259, 312–318 (2018)

    CAS  PubMed  Google Scholar 

  52. P.K. Bajpai, C. Goel, H. Bhunia, Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for Co2 adsorption. J. Environ. Sci. 32, 238–248 (2015)

    Google Scholar 

  53. S. Yu, X. Wang, Z. Chen, J. Wang, X. Wang, Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. J. Hazard. Mater. 321, 111–120 (2016)

    PubMed  Google Scholar 

  54. S.J. Yu, J. Wang, S. Song, K.Y. Sun, J. Li, X.X. Wang, Z.S. Chen, X.K. Wang, One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater. Sci. China. Chem. 60, 415–422 (2017)

    Google Scholar 

  55. H. Pang, Z. Diao, X. Wang, Y. Ma, S. Yu, H. Zhu, Z. Chen, B. Hu, J. Chen, X. Wang, Adsorptive and reductive removal of U(VI) by dictyophoraindusiate-derived biochar supported sulfide nZVI from wastewater. Chem. Eng. J. 366, 368–377 (2019)

    CAS  Google Scholar 

  56. A. Kilislioglu, B. Bilgin, Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl. Radiat. Isot. 58, 155–160 (2003)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This paper is sponsored by the Chinese Research Academy of Environmental Sciences support program (Grant Number 2012BAJ21B08-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieshan Wu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Wu, L., Ou, M. et al. Sorption Studies of Chromium(VI) onto Cerium/Ferroferric Oxide Composites. J Inorg Organomet Polym 31, 2627–2637 (2021). https://doi.org/10.1007/s10904-021-01944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01944-z

Keywords

Navigation