Skip to main content
Log in

The Effects of TeO2 on Polarizability, Optical Transmission, and Photon/Neutron Attenuation Properties of Boro-Zinc-Tellurite Glasses

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Boro-zinc-tellurite glasses in the chemical composition of xTeO2–(30 − x)Li2O–20ZnO–50B2O3 (x is ranging from 0 to 20 mol% with step of 5) were systematically studied by means of their optical features such as molar polarizability (αm), molar refraction (Rm), optical transmission (T), metallization principle (M), and reflection loss (RL). Moreover, the Monte Carlo method (via FLUKA code) was applied to investigate the photon and neutron attenuation properties by estimating the mass attenuation coefficient (MAC) of the glasses involved. The MAC values were then utilized to assess various photon attenuation parameters such as HVL, EAN, and MFP. Finally, an extended comparison was achieved between the MFP values of the present glasses and those of various commonly used radiation shields. The results showed that the general trend in MAC throughout the energy spectrum was (TL1)MAC < (TL2)MAC < (TL3)MAC < (TL4)MAC < (TL5)MAC. The TeO2 addition (the substitution of Li2O by TeO2) has a notable impact to increase the LAC values indicating to improve the photon attenuation ability of the current glass specimens. The maximum \({\Sigma_{R} }\) value was around 0.12 cm−1 for TL1 glass specimen. The investigated glasses could be used for various radiation applications as non-toxic and transparent shields against photon and neutron radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Costa, F. Frontera, J. Heise, M. Feroci, J.I. Zand, F. Fiore, M.N. Cinti et al., Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387(6635), 783–785 (1997)

    CAS  Google Scholar 

  2. H.A. Rutherford, The developing uses of radiation in industry. Text. Chem. Color. 6, 11 (1974)

    Google Scholar 

  3. J.M. Brown, H.M. White, The public’s understanding of radiation and nuclear waste. J. Soc. Radiol. Prot. 7(2), 61 (1987)

    Google Scholar 

  4. M. Donya, M. Radford, A. ElGuindy, D. Firmin, M.H. Yacoub, Radiation in medicine: origins, risks and aspirations. Global Cardiol. Sci. Pract. 2014(4), 57 (2015)

    Google Scholar 

  5. U. Hagen, Radiation biology in space: a critical review. Adv. Space Res. 9(10), 3–8 (1989)

    CAS  PubMed  Google Scholar 

  6. D.J. Brenner, E.J. Hall, Computed tomography: an increasing source of radiation exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007)

    CAS  PubMed  Google Scholar 

  7. R. Eisler, Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals, Three, vol. 1 (CRC Press, Boca Raton, 2000).

    Google Scholar 

  8. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concrete Compos. 28(2), 153–157 (2006)

    CAS  Google Scholar 

  9. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyıldırım, H. Arslan, B.T. Tonguc, R. El-Mallawany, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B 581, 411946 (2019)

    Google Scholar 

  10. B. Alım, E. Şakar, A. Baltakesmez, İ Han, M.I. Sayyed, L. Demir, Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: part I. Rad. Phys. Chem. 166, 108455 (2020)

    Google Scholar 

  11. E. Kavaz, H.O. Tekin, G. Kilic, G. Susoy, Newly developed zinc-tellurite glass system: an experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. J. Non-Cryst. Solids 544, 120169 (2020)

    CAS  Google Scholar 

  12. S.A.M. Issa, A.M. Ali, H.O. Tekin, Y.B. Saddeek, A. Al-Hajry, H. Algarni, G. Susoy, Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3. Nucl. Eng. Technol. 52(6), 1297–1303 (2020)

    CAS  Google Scholar 

  13. M.S. Al-Buriahi, V.P. Singh, Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. J. Aust. Ceram. Soc. (2020). https://doi.org/10.1007/s41779-020-00457-1

    Article  Google Scholar 

  14. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Rad. Eff. Def. Solids 173(11–12), 900–914 (2018)

    CAS  Google Scholar 

  15. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236 (2017)

    CAS  Google Scholar 

  16. G. Lakshminarayana, I. Kebaili, M.G. Dong, M.S. Al-Buriahi, A. Dahshan, I.V. Kityk, D.-E. Lee, J. Yoon, T. Park, Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems. J. Mater. Sci. 55(14), 5750–5771 (2020)

    CAS  Google Scholar 

  17. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389–1401 (1997)

    CAS  Google Scholar 

  18. P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim. Acta A 206, 367–377 (2019)

    CAS  Google Scholar 

  19. P.G. Pavani, K. Sadhana, V.C. Mouli, Optical, physical and structural studies of boro-zinc tellurite glasses. Phys. B 406(6–7), 1242–1247 (2011)

    Google Scholar 

  20. P.G. Pavani, S. Suresh, V.C. Mouli, Studies on boro cadmium tellurite glasses. Opt. Mater. 34(1), 215–220 (2011)

    Google Scholar 

  21. M.S. Al-Buriahi, H. Arslan, H.O. Tekin, V.P. Singh, B.T. Tonguc, MoO3-TeO2 glass system for gamma ray shielding applications. Mater. Res. Express 7(2), 025202 (2020)

    CAS  Google Scholar 

  22. P. Naresh, N. Narsimlu, C. Srinivas, M. Shareefuddin, K.S. Kumar, Ag2O doped bioactive glasses: an investigation on the antibacterial, optical, structural and impedance studies. J. Non-Cryst. Solids 549, 120361 (2020)

    CAS  Google Scholar 

  23. M.S. Al-Buriahi, M.I. Sayyed, Y. Al-Hadeethi, Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses. Ceram. Int (2020). https://doi.org/10.1016/j.ceramint.2020.02.148

    Article  PubMed  PubMed Central  Google Scholar 

  24. P. Naresh, B. Kavitha, H.K. Inamdar, D. Sreenivasu, N. Narsimlu, C. Srinivas, V. Sathe, K.S. Kumar, Modifier role of ZnO on the structural and transport properties of lithium boro tellurite glasses. J. Non-Cryst. Solids 514, 35–45 (2019)

    CAS  Google Scholar 

  25. H.H. Somaily, H. Algarni, S. Alraddadi, Y.S. Rammah, T. Nutaro, M.S. Al-Buriahi, Mechanical, optical, and beta/gamma shielding properties of alkali tellurite glasses: role of ZnO. Ceram Int (2020). https://doi.org/10.1016/j.ceramint.2020.08.017

    Article  Google Scholar 

  26. M.S. Al-Buriahi, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125(10), 678 (2019)

    Google Scholar 

  27. M.S. Al-Buriahi, A.S. Abouhaswa, H.O. Tekin, C. Sriwunkum, F.I. El-Agawany, T. Nutaro, E. Kavaz, Y.S. Rammah, Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O3 glass systems. Ceram. Int. 46(2), 1711–1721 (2020)

    CAS  Google Scholar 

  28. M.S. Al-Buriahi, H.O. Tekin, E. Kavaz, B.T. Tonguc, Y.S. Rammah, New transparent rare earth glasses for radiation protection applications. Appl. Phys. A 125(12), 866 (2019)

    CAS  Google Scholar 

  29. M.S. Al-Buriahi, K.S. Mann, Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system. Mater. Res. Express 6(10), 105206 (2019)

    CAS  Google Scholar 

  30. M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses. Appl. Phys. A 125(7), 482 (2019)

    CAS  Google Scholar 

  31. M.I. Sayyed, H. Akyildirim, M.S. Al-Buriahi, E. Lacomme, R. Ayad, G. Bonvicini, Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF 3 by ZnO. Appl. Phys. A 126(2), 1–12 (2020)

    Google Scholar 

  32. G. Susoy, E.E.A. Guclu, O. Kilicoglu, M. Kamislioglu, M.S. Al-Buriahi, M.M. Abuzaid, H.O. Tekin, The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF-SrO-B2O3 glass system. Mater. Chem. Phys. 242, 122481 (2019)

    Google Scholar 

  33. Y.S. Rammah, M.S. Al-Buriahi, A.S. Abouhaswa, B2O3–BaCO3–Li2O3 glass system doped with Co3O4: structure, optical, and radiation shielding properties. Phys. B 576, 411717 (2019)

    Google Scholar 

  34. P. Naresh, Influence of TeO2 on the UV, electrical and structural studies of Li2O–ZnO–B2O3 glasses. J. Mol. Struct. 1213, 128184 (2020)

    CAS  Google Scholar 

  35. A. Alalawi, M.S. Al-Buriahi, M.I. Sayyed, H. Akyildirim, H. Arslan, M.H.M. Zaid, B.T. Tonguc, Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.017

    Article  Google Scholar 

  36. A. Alalawi, M.S. Al-Buriahi, Y.S. Rammah, Radiation shielding properties of PNCKM bioactive glasses at nuclear medicine energies. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.033

    Article  Google Scholar 

  37. M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Rad. Phys. Chem. 166, 108507 (2019)

    Google Scholar 

  38. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126(1), 1–9 (2020)

    Google Scholar 

  39. Y. Al-Hadeethi, M.S. Al-Buriahi, M.I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram. Int. 46, 5306–5314 (2020)

    CAS  Google Scholar 

  40. M.S. Al-Buriahi, H. Arslan, B.T. Tonguç, Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data. Indian J. Pure Appl. Phys. 57(6), 433–437 (2019)

    Google Scholar 

  41. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom: a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)

    CAS  Google Scholar 

  42. M.I. Sayyed, F. Laariedh, A. Kumr, M.S. Al-Buriahi, Experimental studies on the gamma photon shielding competence of TeO2–PbO–BaO–Na2O–B2O3 glasses. Appl. Phys. A 126(1), 4 (2020)

    CAS  Google Scholar 

  43. A.S. Abouhaswa, M.S. Al-Buriahi, M. Chalermpon, Y.S. Rammah, Influence of ZrO2 on gamma shielding properties of lead borate glasses. Appl. Phys. A 126(1), 1–11 (2020)

    Google Scholar 

  44. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Google Scholar 

  45. A. El-Khayatt, Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37(2), 218–222 (2010)

    CAS  Google Scholar 

  46. F.A. Schmidt, Attenuation Properties of Concrete for Shielding of Neutrons of Energy Less Than 15 MeV (No. ORNL-RSIC-26) (Oak Ridge National Lab, Tenn, 1970).

    Google Scholar 

  47. J. Wood, Computational Methods in Reactor Shielding (Pergamon Press Ltd., Oxford, 1982).

    Google Scholar 

  48. H.H. Somaily, H. Algarni, Y.S. Rammah, A. Alalawi, C. Mutuwong, M.S. Al-Buriahi, The effects of V2O5/K2O substitution on linear and nonlinear optical properties and the gamma ray shielding performance of TVK glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.215

    Article  Google Scholar 

  49. H.H. Somaily, H. Algarni, S. Alraddadi, Y.S. Rammah, T. Nutaro, M.S. Al-Buriahi, Mechanical, optical, and beta/gamma shielding properties of alkali tellurite glasses: role of ZnO. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.017

    Article  Google Scholar 

  50. R. El-Mallawany, F.I. El-Agawany, M.S. Al-Buriahi, C. Muthuwong, A. Novatski, Y.S. Rammah, Optical properties and nuclear radiation shielding capacity of TeO2-Li2O-ZnO glasses. Opt. Mater. 106, 109988 (2020)

    CAS  Google Scholar 

  51. I. Kebaili, I. Boukhris, M.I. Sayyed, B. Tonguc, M.S. Al-Buriahi, Effect of TiO2/V2O5 substitution on the optical and radiation shielding properties of alkali borate glasses: a Monte Carlo investigation. Ceram. Int (2020). https://doi.org/10.1016/j.ceramint.2020.07.042

    Article  PubMed  PubMed Central  Google Scholar 

  52. S. Stalin, D.K. Gaikwad, M.S. Al-Buriahi, C. Srinivasu, S.A. Ahmed, H.O. Tekin, S. Rahman, Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.109

    Article  Google Scholar 

  53. G. Lakshminarayana, M.G. Dong, M.S. Al-Buriahi, A. Kumar, D.-E. Lee, J. Yoon, T. Park, B2O3–Bi2O3–TeO2–BaO and TeO2–Bi2O3–BaO glass systems: a comparative assessment of gamma-ray and fast and thermal neutron attenuation aspects. Appl. Phys. A 126(3), 1–18 (2020)

    Google Scholar 

  54. S. Stalin, D.K. Gaikwad, M.A. Samee, A. Edukondalu, S.K. Ahmmad, A.A. Joshi, R. Syed, Structural, optical features and gamma ray shielding properties of Bi2O3–TeO2–B2O3-GeO2 glass system. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.021

    Article  Google Scholar 

  55. S. Stalin, A. Edukondalu, M.A. Samee, C. Srinivasu, S. Rahman, Physical and optical investigations of Bi2O3-TeO2-B2O3-GeO2 glasses. Mater. Res. Express 6(12), 125209 (2020)

    Google Scholar 

  56. M.S. AlBuriahi, H.H. Hegazy, F. Alresheedi, I.O. Olarinoye, H. Algarni, H.O. Tekin, H.A. Saudi, Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.168

    Article  Google Scholar 

  57. G. Lakshminarayana, A. Kumar, H.O. Tekin, S.A.M. Issa, M.S. Al-Buriahi, D.-E. Lee, J. Yoon, T. Park, Binary B2O3–Bi2O3 glasses: scrutinization of directly and indirectly ionizing radiations shielding abilities. J. Mater. Res. Technol. 9(6), 14549–14567 (2020)

    CAS  Google Scholar 

  58. R. Divina, K.A. Naseer, K. Marimuthu, Y.S.M. Alajerami, M.S. Al-Buriahi, Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lsead borate glasses doped with europium. J. Mater. Sci. 31, 1–16 (2020)

    Google Scholar 

  59. P. Naresh, A. Padmaja, K.S. Kumar, Influence of zinc oxide addition on the biological activity and electrical transport properties of TeO2–Li2O–B2O3 glasses. Materialia 9, 100575 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for financial support through the research groups program under Grant Number (R.G.P.2/97/41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Al-Buriahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegazy, H.H., Al-Buriahi, M.S., Alresheedi, F. et al. The Effects of TeO2 on Polarizability, Optical Transmission, and Photon/Neutron Attenuation Properties of Boro-Zinc-Tellurite Glasses. J Inorg Organomet Polym 31, 2331–2338 (2021). https://doi.org/10.1007/s10904-021-01933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01933-2

Keywords

Navigation