Skip to main content
Log in

Functional Thermal Stable Samples: Non-isothermal Calorimetric Analysis of MoO3–V2O5–TeO2 Oxide Glasses

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research, xMoO3–(60 − x)V2O5–40TeO2 oxide glasses with (0 ≤ x ≤ 60) have been prepared by common melt-quenching method. Differential scanning calorimetry (DSC) at different heating rates (φ) was used to study non-isothermal thermal analysis, and also to gain more insight in to the Hruby index thermal stability, crystal growth index (n), glass forming tendency and so calorimetric characteristics of the present glasses. Also, the effects of the heating rate and MoO3 content on the glass transition temperature (Tg) and crystallization temperature (TCr) were studied. Further structural investigations were done by FESEM, EDX and Map. The glass transition temperature, glass transition region, the temperature corresponding to the onset of crystallization (Tx) and also the crystallization temperature were obtained at different heating rates; heating rate dependence of these parameters was employed estimate the key kinetic parameters of glass transition and crystallization activation energy by using Moyinhan, Ozawa, Kissinger and Avrami methods. Calorimetric curves were used to plot the specific heat capacity curves versus temperature at the constant pressure. In addition, the compositional dependence of the heat capacity and fragility parameter were investigated. Generally, results of this work show that the glass with x = 20 mol% has the highest thermal stability and glass forming tendency and samples having 10 and 20% of MoO3 are the optimal samples (with the least fragility) for thermomechanical applications and also in optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The data used have been extensively presented in Tables.

References

  1. R. Mondal, D. Biswas, A.S. Das, R.K.N. Ningthemcha, D. Deb, S. Bhattacharya, S. Kabi, Influence of samarium content on structural, thermal, linear and non-linear optical properties of ZnO–TeO2–P2O5 glasses. Mater. Chem. Phys. 255(15), 123561 (2020)

    Article  CAS  Google Scholar 

  2. R.K.N. Ningthemcha, D. Biswas, Y.B. Singh, D. Sarkar, R. Mondal, D. Mandal, L.S. Singh, Temperature and frequency dependent electrical conductivity and dielectric relaxation of mixed transition metal doped bismuth-phosphate semiconducting glassy systems. Mater. Chem. Phys. 249, 123207 (2020)

    Article  CAS  Google Scholar 

  3. D. Souri, M. Elahi, The dc electrical conductivity of semiconducting TeO2–V2O5–MoO3 bulk glasses. Phys. Scr. 75(2), 219–226 (2007)

    Article  CAS  Google Scholar 

  4. D. Souri, M. Elahi, M.S. Yazdanpanah, Pool-Frenkel effect and high frequency dielectric constant determination of semiconducting P2O5–Li2MoO4–Li2O and P2O5–Na2MoO4–Na2O bulk glasses. Cent. Eur. J. Phys. 6(2), 306–310 (2008)

    CAS  Google Scholar 

  5. D. Souri, H. Zaliani, E. Mirdawoodi, M. Zendehzaban, Thermal stability of Sb–V2O5–TeO2 semiconducting oxide glasses using thermal analysis. Measurement 82, 19–25 (2016)

    Article  Google Scholar 

  6. D. Souri, Physical and thermal characterization and glass stability criteria of amorphous silver-vanadate-tellurate system at different heating rates: Inducing critical Ag2O/V2O5 ratio. J. Non-Cryst. Solids 475, 136–143 (2017)

    Article  CAS  Google Scholar 

  7. G.S. Murugan, Y. Ohishi, TeO2–BaO–SrO–Nb2O5 glasses: a new glass system for waveguide devices applications. J. Non-Cryst. Solids 341, 86–92 (2004)

    Article  Google Scholar 

  8. R. Mondal, D. Biswas, S. Paul, A.S. Das, C. Chakrabarti, D. Roy, S. Bhattacharya, S. Kabi, Investigation of microstructural, optical, physical properties and dielectric relaxation process of sulphur incorporated selenium–tellurium ternary glassy systems. Mater. Chem. Phys. 257, 123793 (2021)

    Article  CAS  Google Scholar 

  9. D. Biswasa, R.K.N. Ningthemcha, A.S. Das, L.S. Singh, Structural characterization and electrical conductivity analysis of MoO3–SeO2–ZnO semiconducting glass nanocomposites. J. Non-Cryst. Solids 515, 21–33 (2019)

    Article  Google Scholar 

  10. D. Biswas, A.S. Das, R. Mondal, A. Banerjee, D. Deb, A. Dutta, S. Bhattacharya, S. Kabi, L.S. Singh, Study of microstructure and electrical conduction mechanisms of quaternary semiconducting glassy systems: effect of mixed modifiers. J. Non-Cryst. Solids 542, 120104 (2020)

    Article  CAS  Google Scholar 

  11. L.C. Barbosa, C.O. Filho, E.F. Chillcce, Technological advances in tellurite glasses: tellurite glasses for optical amplifiers. Mater. Sci. (2017). https://doi.org/10.1007/978-3-319-53038-3_7

    Article  Google Scholar 

  12. S. Jayaseelan, P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, Transport and solid state battery characteristic studies of silver based super ion conducting glasses. Mater. Sci. Eng. B 119, 136–143 (2005)

    Article  Google Scholar 

  13. J. Lin, W. Huang, Z. Sun, C.S. Ray, D. Day, Structure and non-linear optical performance of TeO2–Nb2O5–ZnO glasses. J. Non-Cryst. Solids 336, 189–194 (2004)

    Article  CAS  Google Scholar 

  14. S.V.G.V.A. Prasad, M.S. Reddy, N. Veeraiah, Nickel ion: a structural probe in BaO–Al2O3–P2O5 glass system by means of dielectric, spectroscopic and magnetic studies. J. Phys. Chem. Solids 67, 2478–2488 (2006)

    Article  CAS  Google Scholar 

  15. A.A. El-Moneim, DTA and IR absorption spectra of vanadium tellurite glasses. Mater. Chem. Phys. 73, 318–322 (2002)

    Article  Google Scholar 

  16. R.N. Sinclair, A.C. Wright, B. Bachra, Y.B. Dimitriev, V.V. Dimitriov, M.G. Arnaudov, The structure of vitreous V2O5–TeO2. J. Non-Cryst. Solids 232–234, 38–43 (1998)

    Article  Google Scholar 

  17. S. Sakida, S. Hayakawa, T. Yoko, 125Te and 51V static NMR study of V2O5–TeO2 glasses. J. Phys. 12, 2579–2595 (2000)

    CAS  Google Scholar 

  18. Y. Dimitriev, Y. Ivanova, M. Dimitrov, E.D. Lefterova, P.V. Angelov, Glass structure of the Ag2O–TeO2–V2O5 system. J. Mater. Sci. Let 19, 1513–1516 (2000)

    Article  CAS  Google Scholar 

  19. M.M. El-Desoky, M.S. Al-Assiri, Structural and polaronic transport properties of semiconducting CuO–V2O5–TeO2 glasses. Mater. Sci. Eng. B 137, 237–246 (2007)

    Article  CAS  Google Scholar 

  20. P. Rozier, A. Burian, G.J. Cuello, Neutron and X-ray scattering studies of Li2O–TeO2–V2O5 glasses. J. Non-Cryst. Solids 351, 632–639 (2005)

    Article  CAS  Google Scholar 

  21. S. Szu, F. Chang, Impedance study of V2O5–TeO2–BaO glasses. Solid State Ionics 176, 2695–2699 (2005)

    Article  CAS  Google Scholar 

  22. M.M. El-Desoky, Characterization and transport properties of V2O5–Fe2O3–TeO2 glasses. J. Non-Cryst. Solids 351, 3139–3146 (2005)

    Article  CAS  Google Scholar 

  23. R. El-Mallawany, N. El-Khoshkhany, H. Afifi, Ultrasonic studies of (TeO2)50–(V2O5)50–x(TiO2)x glasses. Mater. Chem. Phys. 95, 321–327 (2006)

    Article  CAS  Google Scholar 

  24. D. Souri, Effect of molybdenum tri-oxide molar ratio on the optical and some physical properties of tellurite–vanadate–molybdate glasses. Measurement 44, 717–721 (2011)

    Article  Google Scholar 

  25. G. Turky, M. Dawy, Spectral and electrical properties of ternary (TeO2–V2O5–Sm2O3) glasses. Mater. Chem. Phys. 77, 48–59 (2002)

    Article  Google Scholar 

  26. S. Lesz, G. Dercz, Study on crystallization phenomenon and thermal stability of binary Ni–Nb amorphous alloy. J. Therm. Anal. Calorim. 126, 19–26 (2016)

    Article  CAS  Google Scholar 

  27. R. Svoboda, J. Malek, Crystallization mechanisms occurring in the Se–Te glassy system. J. Therm. Anal. Calorim. 119, 155–166 (2015)

    Article  CAS  Google Scholar 

  28. D. Souri, Y. Shahmoradi, Calorimetric analysis of non-crystalline TeO2–V2O5–Sb2O3. J. Therm. Anal. Calorim. 129, 601–607 (2017)

    Article  CAS  Google Scholar 

  29. M.S. Dahiya, S. Khasa, A. Agarwal, Thermal characterization of novel magnesium oxyhalide bismo-borate glass doped with VO2+ ions. J. Therm. Anal. Calorim. 123, 457–465 (2016)

    Article  CAS  Google Scholar 

  30. S. Prasad, K.B.R. Varma, Crystallization kinetics of the LiBO2–Nb2O5 glass using differential thermal analysis. J. Am. Ceram. Soc. 88, 357–361 (2005)

    Article  CAS  Google Scholar 

  31. C.S. Ray, W.H. Huang, D.E. Day, Crystallization kinetics of a lithia-silica glass: effect of sample characteristics and thermal analysis measurement techniques. J. Am. Ceram. Soc 74, 60–66 (1991)

    Article  CAS  Google Scholar 

  32. M. Çelikbilek, A.E. Ersundu, N. Solak, S. Aydin, Crystallization kinetics of the tungsten–tellurite glasses. J. Non-Cryst. Solids 357, 88–95 (2011)

    Article  Google Scholar 

  33. C.T. Moynihan, Correlation between the width of the glass transition region and the temperature dependence of the viscosity of high-Tg glasses. J. Am. Ceram. Soc. 76, 1081 (1993)

    Article  CAS  Google Scholar 

  34. T. Ozawa, Kinetics of non-isothermal crystallization. Polymer 12, 150–158 (1971)

    Article  CAS  Google Scholar 

  35. D. Souri, Crystallization kinetic of Sb–V2O5–TeO2 glasses investigated by DSC and their elastic moduli and Poisson’s ratio. Phys. B 456, 185–190 (2015)

    Article  CAS  Google Scholar 

  36. H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57, 2712 (1956)

    Article  Google Scholar 

  37. H.R. Yin, C.Z. Lv, H. Li, Phase transformation kinetics of LAS transparent glass: ceramic with zero phosphorus expansion. Funct. Mater. 40, 92–96 (2009)

    CAS  Google Scholar 

  38. D. Souri, A. Salehizadeh, Glass transition, fragility, and structural features of amorphous nickel–tellurate–vanadate samples. J. Therm. Anal. Calorim. 112, 689–695 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.F., Souri, D. & Nouri Emamzadeh, A. Functional Thermal Stable Samples: Non-isothermal Calorimetric Analysis of MoO3–V2O5–TeO2 Oxide Glasses. J Inorg Organomet Polym 31, 2877–2890 (2021). https://doi.org/10.1007/s10904-021-01911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01911-8

Keywords

Navigation