Skip to main content
Log in

Facile Synthesis of SnS2 Nanoparticles and Catalytic Reduction of Lemon Yellow

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

SnS2 nanoparticles are synthesized by hydrothermal method from thioacetamide and stannic chloride, and the as-prepared SnS2 nanoparticles are characterized by X-ray diffractometer, scanning electron microscopy, transmission electron microscope, energy dispersive spectrometer and AC impedance spectrum technology. Electrochemical reduction of lemon yellow at nano SnS2-modied glassy carbon electrode is investigated, and the results indicating that the SnS2 nanoparticles have a certain catalytic effect on lemon yellow, and the reduction mechanism and detection of lemon yellow are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Chen, S.N. Xia, X. Pan, H. Lu, Z. Ji, Easily removable visible-light-driven photocatalyst of nickel modified SnS2 nanosheets for reduction of Cr(VI). J. Alloy. Compound. 735, 1314–1318 (2018)

    Article  CAS  Google Scholar 

  2. K.D. Kıranşan, E. Topçu, SnS2–g-C3N4/rGO composite paper as an electrode for high-performance flexible symmetric supercapacitors. Synthetic Met. 264, 116390 (2020)

    Article  Google Scholar 

  3. Y.-Q. Wu, Y. Yang, H. Pu, R.-Z. Gao, W.-J. Meng, H.-X. Yang, D.-L. Zhao, SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage. J. Alloy. Compound. 822, 153686 (2020)

    Article  CAS  Google Scholar 

  4. M. Haghighi, M. Minbashi, N. Taghavinia, D.-H. Kim, S.M. Mahdavi, A.A. Kordbacheh, A modeling study on utilizing SnS2 as the buffer layer of CZT(S, se) solar cells. Sol. Energy 167, 165–171 (2018)

    Article  CAS  Google Scholar 

  5. R. Feng, K. Tian, Y. Zhang, W. Liu, J. Fang, M. S. Khan, Q. Wei, R. Wu, Recognition of M2 type tumor-associated macrophages with ultrasensitive and biocompatible photoelectrochemical cytosensor based on Ce doped SnO2/SnS2 nano heterostructure. Biosens. Bioelectron. 165, 112367 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. M.S.A. Sher Shah, A.R. Park, A. Rauf, S.H. Hong, Y. Choi, J. Park, J. Kim, W.-J. Kim, P.J. Yoo, Highly interdigitated and porous architected ternary composite of SnS2, g-C3N4 , and reduced graphene oxide (rGO) as high performance lithium ion battery anodes. RSC Adv. 7, 3125–3135 (2017)

    Article  CAS  Google Scholar 

  7. Y. Ren, W. Lv, F. Wen, J. Xiang, Z. Liu, Microwave synthesis of SnS2 nanoflakes anchored graphene foam for flexible lithium-ion battery anodes with long cycling life. Mater. Lett. 174, 24–27 (2016)

    Article  CAS  Google Scholar 

  8. J. Yin, H. Cao, Z. Zhou, J. Zhang, M. Qu, SnS2 @reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J. Mater. Chem. 22, 23963–23970 (2012)

    Article  CAS  Google Scholar 

  9. D. Ma, W. Zhang, Q. Tang, R. Zhang, W. Yu, Y. Qian, Large-scale hydrothermal synthesis of SnS 2 nanobelts. J. Nanosci. Nanotechno. 5, 806–809 (2005)

    Article  CAS  Google Scholar 

  10. H. Sun, M. Ahmad, J. Luo, Y. Shi, W. Shen, J. Zhu, SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Mater. Res.Bull. 49, 319–324 (2014)

    Article  CAS  Google Scholar 

  11. H. Chang, E. In, K.-j. Kong, J.-O. Lee, Y. Choi, B.-H. Ryu, First-principles studies of SnS2 nanotubes: A potential semiconductor nanowire. J. Phys. Chem. B 109, 30–32 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. H. Li, S.G. Leonardi, A. Bonavita, G. Neri, W. Wlodarski, Two-dimensional (2D) SnS2-based oxygen sensor. Proc. Eng. 168, 1102–1105 (2016)

    Article  CAS  Google Scholar 

  13. J. Liang, H. Li, Z. Sun, D. Jia, N-doped CMK-3 anchored with SnS2 nanosheets as anode of lithium ion batteries with superior cyclic performance and enhanced reversible capacity. J. Solid State Chem. 265, 424–430 (2018)

    Article  CAS  Google Scholar 

  14. S. Velmurugan, S. Palanisamy, T.C.-K. Yang, Single-crystalline SnS2 nano-hexagons based non-enzymatic electrochemical sensor for detection of carcinogenic nitrite in food samples. Sensor. Actuat.: B. Chem. 316, 128106 (2020)

    Article  CAS  Google Scholar 

  15. Z. Qin, K. Xu, H. Yue, H. Wang, J. Zhang, C. Ouyang, C. Xie, D. Zeng, Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sensor. Actuat.: B. Chem. 262, 771–779 (2018)

    Article  CAS  Google Scholar 

  16. D. Liu, Z. Tang, Z. Zhang, Visible light assisted room-temperature NO2 gas sensor based on hollow SnO2@SnS2 nanostructures. Sensor. Actuat.: B. Chem. 324, 128754 (2020)

    Article  CAS  Google Scholar 

  17. D. Gu, X. Wang, W. Liu, X. Li, S. Lin, J. Wang, M.N. Rumyantseva, A.M. Gaskov, S.A. Akbar, Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sensor. Actuat.: B. Chem. 305, 127455 (2020)

    Article  CAS  Google Scholar 

  18. Z. Yang, Y. Ren, Y. Zhang, J. Li, H. Li, X. Huang, X. Hu, Q. Xu, Nanoflake-like SnS2 matrix for glucose biosensing based on direct electrochemistry of glucose oxidase. Biosens. Bioelectron. 26, 4337–4341 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. A.J.J. Amalraj, N.M. Umesh, S.-F. Wang, Synthesis of core-shell-like structure SnS2-SnO2 integrated with graphene nanosheets for the electrochemical detection of furazolidone drug in furoxone tablet. J. Mol. Liq. 313, 113554 (2020)

    Article  Google Scholar 

  20. N. Gao, Y. Zhang, K. Gao, J. Xie, L. Liu, Y. Li, L. Qiu, Q. Wei, H. Ma, X. Pang, Ultrasensitive label-free photoelectrochemical immunosensor for the detection of amyloid β-protein based on Zn:SnO2/SnS2 -au nanocomposites. Sensor. Actuat.: B. Chem. 308, 127576 (2020)

    Article  CAS  Google Scholar 

  21. D. Nathiya, K. Gurunathan, J. Wilson, Size controllable, pH triggered reduction of bovine serum albumin and its adsorption behavior with SnO2/SnS2 quantum dots for biosensing application. Talanta 210, 120671 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. D. Huang, L. Wang, Y. Zhan, L. Zou, B. Ye, Photoelectrochemical biosensor for CEA detection based on SnS2-GR with multiple quenching effects of Au@CuS-GR. Biosens. Bioelectron. 140, 111358 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. V. Prajitha, J.E. Thoppil, Induction of giant cells by the synthetic food colorants viz. lemon yellow and orange red. Cytotechnology 68, 443–450 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. H. Oka, Y. Ikaia, T. Ohno, N. Kawamura, J. Hayakawa, K. Harada, Identification of unlawful food dyes by thin-layer chromatography-fast atom bombardment mass spectrometry. J. Chromatogr. A 674, 301–307 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. C.C. Blanco, A.M.G. Campana, F.A. Barrero, Derivative spectrophotometric resolution of mixtures of the food colourants Tartrazine, Amaranth and Curcumin in a micellar medium. Talanta 43, 1019–1027 (1996)

    Article  CAS  Google Scholar 

  26. J.J.B. Nevado, C.G. Cabanillas, A.M.C. Salcedo, Simultaneous spectrophotometric determination of three food dyes by using the first derivative of ratio spectra. Talanta 429, 2043–2051 (1995)

    Article  Google Scholar 

  27. L.F. Capitán-Vallvey, M.D. Fernandez, I.D. Orbe, R. Avidad, Simultaneous determination of the colorants tartrazine, ponceau 4R and sunset yellow FCF in foodstuffs by solid phase spectrophotometry using partial least squares multivariate calibration. Talanta 47, 861–868 (1998)

    Article  PubMed  Google Scholar 

  28. G.M. Greenway, N. Kometa, R. Macrae, The determination of food colours by HPLC with on-line dialysis for sample preparation. Food Chem. 43, 137–140 (1992)

    Article  CAS  Google Scholar 

  29. P.C. White, A.M. Harbin, High-performance liquid chromatography of acidic dyes on a dynamically modified polystyrene-divinylbenzene packing material with multi-wavelength detection and absorbance ratio characterisation. Analyst. 114, 877–882 (1989)

    Article  CAS  Google Scholar 

  30. Q.C. Chen, S.F. Mou, X.P. Hou, J.M. Riviello, Z.M. Ni, Determination of eight synthetic food colorants in drinks by high-performance ion chromatography. J. Chromatogr. A 827, 73–81 (1998)

    Article  CAS  PubMed  Google Scholar 

  31. C.O. Thompson, V.C. Trenerry, Determination of synthetic colours in confectionery and cordials by micellar electrokinetic capillary chromatography. J. Chromatogr. A 704, 195–201 (1995)

    Article  CAS  Google Scholar 

  32. S. Razee, A. Tamura, T. Masujima, Improvement in the determination of food additive dyestuffs by capillary electrophoresis using β-cyclodextrin. J. Chromatogr. A 715, 179–188 (1995)

    Article  CAS  Google Scholar 

  33. S. Suzuki, M. Shirao, M. Aizawa, H. Nakazawa, K. Sasa, H. Sasagawa, Determination of synthetic food dyes by capillary electrophoresis. J. Chromatogr. A 680, 541–547 (1994)

    Article  CAS  PubMed  Google Scholar 

  34. H.W. Liu, T. Zhu, Y.N. Zhang, S.Z. Qi, A.J. Huang, Y.L. Sun, Determination of synthetic colourant food additives by capillary zone electrophoresis. J. Chromatogr. A 718, 448–453 (1995)

    Article  CAS  Google Scholar 

  35. J.J.B. Nevado, J.R. Flores, M.J.V. Llerena, Square wave adsorptive voltammetric determination of sunset yellow. Talanta 44, 467–474 (1997)

    Article  CAS  PubMed  Google Scholar 

  36. Y.Z. Song, J.M. Xu, J.S. Lv, H. Zhong, Y. Ye, J.M. Xie, Electrochemical reduction of tartrazine at multi-walled carbon nanotube-modified pyrolytic graphite electrode. Russ. J. Phy. Chem. A 86, 303–310 (2012)

    Article  CAS  Google Scholar 

  37. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  38. G. Wang, J. Peng, L. Zhang, J. Zhang, B. Dai, M. Zhu, L. Xia, F. Yu, Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for Lithium-ion batteries. J. Mater. Chem. A 3, 3659–3666 (2015)

    Article  CAS  Google Scholar 

  39. D. Wang, M. Tang, H. Jiang, M. Li, S. Jiang, L. Sun, J. Sun, Helical bowl-like SnS2 with structure-induced conversion efficiency for enhanced photothermal therapy. Chem. Eng. J. 400, 125814 (2020)

    Article  CAS  Google Scholar 

  40. Y. Song, Electrochemical reduction of C.I. acid red 18 on multi-walled carbon nanotubes and its analytical application. Dyes Pigments 87, 39–43 (2010)

    Article  CAS  Google Scholar 

  41. I.M. Kolthoff, J.J. Lingane, Polarography, vol 2 (Interscience Publishers, New York, 1952)

    Google Scholar 

  42. L. Dykes, G.C. Peterson, W.L. Rooney, L.W. Rooney, Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem. 128, 173–179 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Opened Foundation of Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education of China, Opened Foundation of Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials (Grant No. JSKC17009), Science Foundation of Huai-An City (Grant No.SN0675) and Science Foundation of education Department of Jiangsu Province of China (Grant No. 07KJD610028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Z. Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y.Z., Li, M.T., Qi, B.X. et al. Facile Synthesis of SnS2 Nanoparticles and Catalytic Reduction of Lemon Yellow. J Inorg Organomet Polym 31, 1745–1753 (2021). https://doi.org/10.1007/s10904-021-01907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01907-4

Keywords

Navigation