Skip to main content
Log in

Role of preparation conditions on the pseudocapacitor properties of SnO2 nanoparticles by co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline phase pure Tin Oxide (SnO2) materials were prepared by chemical co-precipitation method. The materials were prepared using water and 2-propanol as the co-solvents taken in 1:1 ratio. The role of varying the molar concentrations of the raw material and the effect of calcination temperature on the structural, optical, and the electrochemical properties of the SnO2 were explored. The stoichiometric ratio of Tin: Oxygen was found to be 1:2 in all the cases as observed from the EDAX studies. Irrespective of the calcination temperature, the SnO2 made using the 0.4 M of Tin source outperformed other materials in terms of electrochemical performance owing to the good synergy between structural and optical properties. The above material calcinated at 800 °C exhibited an outstanding specific capacitance of 580 F/g at a current density of 1 A/g. Electrochemical impedance spectroscopy indicates the capacitive behavior of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Boran, S. Cetinkaya, M.E. Sahin, Effect of surfactant types on the size of tin oxide nanoparticles. Acta Phys. Pol., A 132, 546–548 (2017)

    Article  CAS  ADS  Google Scholar 

  2. A. Sharma, A. Ahmed, A. Singh, S.K. Oruganti, A. Khosla, S. Arya, Recent advances in tin oxide nanomaterials as electrochemical/chemiresistive sensors. J. Electrochem. Soc. 168(2), 027505 (2021)

    Article  CAS  ADS  Google Scholar 

  3. M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M. Shokooh-Saremi, The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing–complexing sol–gel method. Physica B 403(13–16), 2431–2437 (2008)

    Article  CAS  ADS  Google Scholar 

  4. S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014)

    Article  CAS  Google Scholar 

  5. P.S. Subbarao, Y. Aparna, K.L. Chitturi, Synthesis and characterization of Ni doped SnO2 nanoparticles by sol-gel method for novel applications. Mater. Today: Proc. 26, 1676–1680 (2020)

    Google Scholar 

  6. Q. Zhao, L. Ma, Q. Zhang, C. Wang, X. Xu, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries and supercapacitors. J. Nanomater. 850147, 1–15 (2015)

    ADS  Google Scholar 

  7. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Spray pyrolysis deposition of nanostructured tin oxide thin films, International Scholarly Research. Network 275872, 1–5 (2012)

    Google Scholar 

  8. H.X. Yang, J.F. Qian, Z.X. Chen, X.P. Ai, Y.L. Cao, Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment. J. Phys. Chem. C 111(38), 14067–14071 (2007)

    Article  CAS  Google Scholar 

  9. Z. Chen, J.K.L. Lai, C.H. Shek, H. Chen, Synthesis and structural characterization of rutile SnO2 nanocrystals. J. Mater. Res. 18(06), 1289–1292 (2003)

    Article  CAS  ADS  Google Scholar 

  10. M. Aziz, S. Saber Abbas, W.R. Wanb Aharom, Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater. Lett. 91, 31–34 (2013)

    Article  CAS  Google Scholar 

  11. R. Bargougui, K. Omri, A. Mhemdi, S. Ammar, Synthesis and characterization of SnO2 nanoparticles: effect of hydrolysis rate on the optical properties. Adv. Mater. Lett. 6(9), 816–819 (2015)

    Article  CAS  Google Scholar 

  12. A. Hassanzadeh, B. Moazzez, H. Haghgooie, M. Nasseri, M. Golzan, H. Sedghi, Synthesis of SnO2 nanopowders by a sol-gel process using propanol-isopropanol mixture. Open Chem. 6(4), 651–656 (2008)

    Article  CAS  Google Scholar 

  13. R.N. Mariammal, N. Rajamanickam, K. Ramachandran, Synthesis and characterization of undoped and co-doped SnO2 nanoparticles. J. Nano Electron. Phys. 3(1), 92–100 (2011)

    Google Scholar 

  14. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J. Phys. Chem. B 108(24), 8119–8123 (2004)

    Article  CAS  Google Scholar 

  15. P. Muhammed Shafi, A. Chandrabose, Impact of crystalline defects and size on Xray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 5, 057137 (2015)

    Article  ADS  Google Scholar 

  16. N. Rani, N. Jaggi, Effect of reaction temperature on the structural and electronic properties of stannic oxide nanostructures. Bull. Mater. Sci. 43, 146 (2020)

    Article  CAS  Google Scholar 

  17. G. Zhang, X. Xiao, B. Li, P. Gu, H. Xue, H. Pang, Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. A 5, 8155–8186 (2017)

    Article  CAS  Google Scholar 

  18. P. Khaenamkaew, D. Manop, C. Tanghengjaroen, W. Palakawong Na Ayuthaya, Crystal structure, lattice strain, morphology, and electrical properties of SnO2 nanoparticles induced by low calcination temperature. Adv. Mater. Sci. Eng. 3852421, 1–10 (2020)

    Article  Google Scholar 

  19. M. Scimeca, S. Bischetti, H.K. Lamsira, R. Bonfiglio, E. Bonanno, Energy Dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur. J. Histochem. 62(1), 2841 (2018)

    PubMed  PubMed Central  Google Scholar 

  20. A. Azam, A.S. Ahmed, S.S. Habib, A.H. Naqvi, Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles. J. Alloy. Compd. 523, 83–87 (2012)

    Article  CAS  Google Scholar 

  21. A. Bhattacharjee, M. Ahmaruzzaman, T. Sinha, A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 751–760 (2015)

    Article  CAS  ADS  Google Scholar 

  22. S. Naz, I. Javid, S. Konwar, K. Surana, P.K. Singh, M. Sahni, B. Bhattacharya, A simple low cost method for synthesis of SnO2 nanoparticles and its characterization. SN Appl. Sci. 2, 975 (2020)

    Article  CAS  Google Scholar 

  23. K. Sujatha, T. Seethalakshmi, A.P. Sudha, O.L. Shanmugasundaram, Photoluminescence properties of pure, Fe-doped and surfactant-assisted Fe-doped tin-oxide nanoparticles. Bull. Mater. Sci. 43, 1–10 (2020)

    Article  Google Scholar 

  24. J. Zhang, L. Gao, Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. J. Solid State Chem. 177(4–5), 1425–1430 (2004)

    Article  CAS  ADS  Google Scholar 

  25. L. Tan, L. Wang, Y. Wang, Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical properties. J. Nanomater. 529874, 1–10 (2011)

    Article  Google Scholar 

  26. B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, S. Ravichandran, P. Muthu Mareeswaran, R. Yuvakkumar, Enhanced pseudocapacitive performance of SnO2, Zn-SnO2, and Ag-SnO2 nanoparticles. Ionics 24(12), 2727 (2018)

    Article  Google Scholar 

  27. K. Rafique, M.Z.U. Shah, A. Shah, M.S.U. Shah, H. Hou, M. Sajjad, M. Arif, S.A. Ahmad, N. Hassan, Electrochemical performance evaluation of a newly developed ZnS–SnO2 composite in an aqueous electrolyte. J. Mater. Sci. Mater. Electron. 34(24), 1717 (2023)

    Article  CAS  Google Scholar 

  28. V. Velmurugan, U. Srinivasarao, R. Ramachandran, M. Saranya, A.N. Grace, Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater. Res. Bull. 84, 145–151 (2016)

    Article  CAS  Google Scholar 

  29. S. Alkhalaf, C.K. Ranaweera, P.K. Kahol, K. Siam, H. Adhikari, S.R. Mishra, F. Perez, B.K. Gupta, K. Ramasamy, R.K. Gupta, Electrochemical energy storage performance of electrospun CoMn2O4 nanofibers. J. Alloy. Compd. 692, 59–66 (2017)

    Article  CAS  Google Scholar 

  30. V. Gowthambabu, S.S. Kanmani, N. Rajamanickam, Influence of anionic precursors on electrochemical properties of tin oxide nanoparticles: a comparative analysis. J. Mater. Sci. Mater. Electron. 9, 11695–11708 (2021)

    Article  Google Scholar 

  31. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance. J. Phys. Chem. Solids 141, 109407 (2020)

    Article  CAS  Google Scholar 

  32. D. Dodoo-Arhin, R.A. Nuamah, P.K. Jain, D.O. Obada, A. Yaya, Nanostructured stannic oxide: synthesis and characterisation for potential energy storage applications. Results Phys. 9, 1391–1402 (2018)

    Article  ADS  Google Scholar 

  33. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95(2), 197–206 (2018)

    Article  CAS  Google Scholar 

  34. B. Varshney, M.J. Siddiqui, A.H. Anwer, M.Z. Khan, F. Ahmed, A. Aljaafari, H.H. Hammud, A. Azam, Synthesis of mesoporous SnO2/NiO nanocomposite using modified sol–gel method and its electrochemical performance as electrode material for supercapacitors. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  35. H. Cui, Y. Liu, W. Ren, M. Wang, Y. Zhao, Large scale synthesis of highly crystallized SnO2 quantum dots at room temperature and their high electrochemical performance. Nanotechnology 24(34), 345602 (2013)

    Article  PubMed  Google Scholar 

  36. M. Imran, X. Zhang, Recent developments on the cyclic stability in elastocaloric materials. Mater. Design 195, 109030 (2020)

    Article  CAS  Google Scholar 

  37. S. Hashemizadeh, M. Ahmadi, R. Gholipur, Ni0.85Co0.15MoO electrodes for supercapacitors with good cycling stability and capacitive performance. J. Mater. Sci.: Mater. Electron. 34(36), 2308 (2023)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Materials preparation, Data curation, Investigation, Methodology, Formal analysis, Writing-Original draft was done by AP. The experiments and results were validated by AS, AB, JS, SP, KA, and SS. The research work conceptualization, formal analysis, funding acquisition, project administration, resources, supervision, and writing—review & editing were done by MS and SS. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to A. Priyadharsini or S. Sudhahar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All the authors declare that this research article is original and have not been in the consideration in other journals or publications. Also, authors assure that there are no ethical violations in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadharsini, A., Saravanakumar, M., Sakunthala, A. et al. Role of preparation conditions on the pseudocapacitor properties of SnO2 nanoparticles by co-precipitation method. J Mater Sci: Mater Electron 35, 451 (2024). https://doi.org/10.1007/s10854-024-12239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12239-7

Navigation