Skip to main content
Log in

Effect of Copper on the Oxidation Mechanisms of Tertiary and Secondary Amines of Methyl-naphthyl- cyclen-Modified Gold Electrodes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Tetraazamacrocycle such as 1,4,7,10-tetraazacyclododecane “cyclen” are known for efficient complexation of metallic ions and were used as an ionic recognition agents in chemical sensors in aqueous medium.The aim of this paper is to examine in more detail the oxidation mechanism of amines in cyclen before copper complexation and after copper complexation. Gold electrodes modified with mono-N-MNCyclen(mono methyl-naphtyl-cyclen) and tetra-N-MNCyclen thin films were obtained by deposition of mono-N-MNCyclen and the tetra-N-MNCyclensynthesized respectively by bisaminal route in three steps (protection, N-mono-alkylation and deprotection) and direct route. The comparative study of the electrochemical oxidation of amines in both cyclens allowed the identification of the tertiary and of the secondary amines. From the potential-pH relation and the variation of the intensities of the oxidation peaks, the redox mechanisms of both types of amines was proposed. The electrochemical redox behaviour of the amines in the copper-mono-N-MNCyclen complex was studied. From the potential-pH relation and the variation of the intensities of the oxidation peaks, the redox mechanisms of amines and the structure of the copper-mono-N-MNCyclen complex were proposed. The intensities of the oxidation peaks of the amines vary linearly with the copper concentration, in the range 10−12 M to 10–6 M, leading to a detection limit of of 1 pM of Cu2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 5
Fig. 11
Scheme 6

Similar content being viewed by others

References

  1. S. Martin, W. Griswold, Human Health Effects of Heavy Metals. Environmental Science and Technology Briefs for Citizens, CHSR, Kansas State University Issue 5, March 2009.

  2. R.A. Mohamed, A.M. Abdel-Lateef, H.H. Mahmoud, A.I. Helal, Determination of trace elements in water and sediment samples from Ismaelia Canal using ion chromatography and atomic absorption spectroscopy. Chem. Speciat. Bioavailab 24, 31–38 (2012). https://doi.org/10.3184/095422912X13257005726800

    Article  CAS  Google Scholar 

  3. O.V.S. Raju, P.M.N. Prasad, V. Varalakshmi, Y.V.R. Reddy, Determination of heavy metals in ground water by ICP-OES in selected coastal area of Spsr Nellore District, Andhra Pradesh. India. Int. J. Innov. Res. Sci. Eng. Technol. 3, 9743–9749 (2014)

    Google Scholar 

  4. M. Batsala, B. Chandu, B. Sakala, S. Nama, S. Domatoti, Inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Res. Pharm. Chem. 2(3), 671–680 (2012)

    CAS  Google Scholar 

  5. X. Yu, J. Zhang, Macrocyclic Polyamines: Synthesis and Applications (Wiley, New York, 2018).

    Book  Google Scholar 

  6. W.B. Mefteh, H. Touzi, Y. Chevalier, H.B. Ouada, A. Othmane, R. Kalfat, N. Jaffrezic-Renault, Comparison of polysiloxane films substituted by undecenyl-cyclam and by naphthyl-cyclam for the design of ISFET devices sensitive to Fe3+ions. Sens. Actuators B 204, 723–733 (2014). https://doi.org/10.1016/j.snb.2014.07.129

    Article  CAS  Google Scholar 

  7. W.B. Mefteh, H. Touzi, Y. Chevalier, F. Bessueille, R. Kalfat, N. Jaffrezic-Renault, Gold electrodes functionalized by methyl-naphthyl substituted cyclam films for the detection of metal ions. Sens. Actuators B 213, 334–342 (2015). https://doi.org/10.1016/j.snb.2015.02.109

    Article  CAS  Google Scholar 

  8. H. Touzi, Y. Chevalier, F. Bessueille, H.B. Ouada, N. Jaffrezic-Renault, Detection of dyestuffs with an impedimetric sensor based on Cu2+-methylnaphthylcyclen complex functionalized gold electrodes. Sens. Actuators B 273, 1211–1221 (2018). https://doi.org/10.1016/j.snb.2018.07.011

    Article  CAS  Google Scholar 

  9. V. Alexander, Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chem. Rev. 95(2), 273–342 (1995). https://doi.org/10.1021/cr00034a002

    Article  CAS  Google Scholar 

  10. P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99(9), 2293–2352 (1999). https://doi.org/10.1021/cr980440x

    Article  CAS  PubMed  Google Scholar 

  11. M.D. Bartholomä, Recent developments in the design of bifunctional chelators for metal-based radiopharmaceuticals used in positron emission tomography. Inorg. Chim. Acta 389, 36–51 (2012). https://doi.org/10.1016/j.ica.2012.01.061

    Article  CAS  Google Scholar 

  12. D. Gaffney, N.H. Abdallah, J.C. Cooney, F.R. Laffir, K.E. Cassimpee, P. Berglund, U. Hanefeld, E. Magner, Preparation and characterisation of a Ni2+/Co2+-cyclam modified mesoporous cellular foam for the specific immobilisation of His6-alanine racemase. J. Mol. Catal. B 109, 154–160 (2014). https://doi.org/10.1016/j.molcatb.2014.08.011

    Article  CAS  Google Scholar 

  13. S. El Ghachtouli, C. Cadiou, I. Déchamps-Olivier, F. Chuburu, M. Aplincourt, V. Patinec, M. Le Baccon, H. Handel, T. Roisnel, Nickel(II) complexes of cyclen- and cyclam-pyridine: topological reorganisations induced by electron transfer. New J. Chem. 30, 392–398 (2006). https://doi.org/10.1039/b515107d

    Article  CAS  Google Scholar 

  14. S. El Ghachtouli, C. Cadiou, I. Déchamps-Olivier, F. Chuburu, M. Aplincourt, T. Roisnel, (Cyclen– and cyclam pyridine)copper complexes: the role of the pyridine moiety in CuII and CuI stabilisation. Eur. J. Inorg. Chem. (2006). https://doi.org/10.1002/ejic.200600297

    Article  Google Scholar 

  15. E. Kimura, T. Gotoh, S. Aoki, M. Shiro, Study of pH-dependent zinc(II)-carboxamide interactions by Zinc(II)-carboxamide-appended cyclen complexes (Cyclen = 1,4,7,10-Tetraazacyclododecane). Inorg. Chem. 41, 3239–3248 (2002). https://doi.org/10.1021/ic020087k

    Article  CAS  PubMed  Google Scholar 

  16. C.B. Castellani, L. Fabbrizzi, M. Licchelli, A. Perotti, A. Poggi, Stabilisation by a strongly acidic medium of trivalent copper tetra-aza macrocyclic complexes. J. Chem. Soc. Chem. Commun. (1984). https://doi.org/10.1039/c39840000806

    Article  Google Scholar 

  17. D.C. Olson, J. Vasilevskis, Cyclic amine complexes of copper(I), -(II), and –(III). Electrochemistry, preparation, and properties. Inorg. Chem. 10(3), 463–470 (1971). https://doi.org/10.1021/ic50097a005

    Article  CAS  Google Scholar 

  18. E.K. Barefield, M.T. Mocella, Mechanism of base promoted reduction of nickel(III) complexes of macrocyclic amines. A coordinated ligand radical intermediate. J. Am. Chem. Soc. 97(15), 4238–4246 (1975). https://doi.org/10.1021/ja00848a015

    Article  CAS  Google Scholar 

  19. E. Zeigerson, G. Ginzburg, D. Meyerstein, L.J. Kirschenbaum, Comparative study of the electrochemical and pulse-radiolytic oxidation of the complexes of nickel(II) and copper(II) containing 1,4,8,11–tetraazacyclotetradecane. J. C. S. Dalton (1980). https://doi.org/10.1039/dt9800001243

    Article  Google Scholar 

  20. F. Wudl, R.O. Angus Jr., F.L. Lu, P.M. Allemand, D. Vachon, M. Nowak, Z.X. Liu, H. Schaffer, A.J. Heeger, Poly-p-phenyleneamineimine : synthesis and comparison to polyaniline. J. Am. Chem. Soc. 109(12), 3677–3684 (1987). https://doi.org/10.1021/ja00246a026

    Article  CAS  Google Scholar 

  21. J. Yue, A.J. Epstein, Synthesis of self-doped conducting polyaniline. J. Am. Chem. Soc. 112(7), 2800–2801 (1990). https://doi.org/10.1021/ja00163a051

    Article  CAS  Google Scholar 

  22. A. Deronzier, J.C. Moutet, Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications. Acc. Chem. Res. 22, 249–255 (1989). https://doi.org/10.1021/ar00163a004

    Article  CAS  Google Scholar 

  23. E.M. Geniès, A. Boyle, M. Lapkowski, C. Tsintavis, Polyaniline: a historical survey author links open overlay panel. Synth. Met. 36(2), 139–182 (1990). https://doi.org/10.1016/0379-6779(90)90050-U

    Article  Google Scholar 

  24. C.K. Mann, K.K. Barnes, Electrochemical Reactions in Nonaqueous Systems (Marcel Dekker, New York, 1970).

    Google Scholar 

  25. L.C. Portis, V.V. Bhat, C.K. Mann, Electrochemical dealkylation of aliphatic tertiary and secondary amines. J. Org. Chem. 35, 2175–2178 (1970). https://doi.org/10.1021/jo00832a014

    Article  CAS  Google Scholar 

  26. S.F. Nelsen, C.R. Kessel, 9-Butylazabicyclo[3.3.1]nonane radical cation, the first long-lived saturated amine radical cation. J. Chem. Soc. Chem. Commun. (1977). https://doi.org/10.1039/c39770000490

    Article  Google Scholar 

  27. H. Bock, I. Goebel, Z. Havlas, S. Liedle, H. Oberhammer, Triisopropylamine: a sterically overcrowded molecule with a flattened nc3 pyramid and a “p-Type” nitrogen electron pair. Angew. Chem. 30, 187–190 (1991). https://doi.org/10.1002/anie.199101871

    Article  Google Scholar 

  28. T.M. McKinney, D.H. Geske, The triethylenediamine cation radical. J. Am. Chem. Soc. 87(13), 3013–3014 (1965). https://doi.org/10.1021/ja01091a044

    Article  CAS  Google Scholar 

  29. P.A. Bischoff, J.A. Hasmall, E. Heilbronner, V. Hornung, Nitrogen lone pair interaction in 1,4-diaza-bicyclo[2.2.2]octane (DABCO). Tetrahedron Lett. 10(46), 4025–4028 (1969). https://doi.org/10.1016/S0040-4039(01)88604-4

    Article  Google Scholar 

  30. E. Heilbronner, K.A. Muszkat, Applications of photoelectron spectroscopy. X. Relative importance of through-space vs. through-bond interaction between the lone pairs in 1,4-diazabicyclo[2.2.2]octane. J. Am. Chem. Soc. 92(12), 3818–3821 (1970). https://doi.org/10.1021/ja00715a064

    Article  CAS  Google Scholar 

  31. S.F. Nelsen, J.M. Buschek, Charge delocalization in saturated systems. The radical cation of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane. J. Am. Chem. Soc. 96, 6424–6428 (1974). https://doi.org/10.1021/ja00827a028

    Article  CAS  Google Scholar 

  32. S.F. Nelsen, E. Haselbach, R. Gschwind, U. Klemm, S. Lanyova, Three-electron, sigma, bonding in the radical cation from 1,3,6,8-tetraazatricyclo [4.4.1.13,8]dodecane. J. Am. Chem. Soc. 100, 4367–4368 (1978). https://doi.org/10.1021/ja00482a008

    Article  CAS  Google Scholar 

  33. R.W. Alder, R. Gill, N.C. Goode, Formation of three- and two-electron σ-bonds by removal of lone pair electrons from a diamine. J. Chem. Soc. Chem. Commun. (1976). https://doi.org/10.1039/C39760000973

    Article  Google Scholar 

  34. R.W. Alder, N.C. Goode, T.J. King, J.M. Mellow, B.W. Miller, A 1,5-diazabicyclo[3.3.3]undecane derivative with almost planar bridgehead nitrogens. J. Chem. Soc. Chem. Commun. (1976). https://doi.org/10.1039/c39760000173

    Article  Google Scholar 

  35. Y.L. Chow, W.C. Danen, S.F. Nelsen, D.H. Rosenblatt, Nonaromatic aminium radicals. Chem. Rev. 78(3), 243–274 (1978). https://doi.org/10.1021/cr60313a003

    Article  CAS  Google Scholar 

  36. F. Oukhatar, M. Beyler, R. Tripier, Straight forward and mild deprotection methods of N-mono- and N1, N7-functionalised bisaminal cyclens. Tetrahedron 71, 3857–3862 (2015). https://doi.org/10.1016/j.tet.2015.04.021

    Article  CAS  Google Scholar 

  37. S.J. Jenkins, Aromatic adsorption on metals via first-principles density functional theory. Proc. Roy. Soc. A 465, 2949–2976 (2009). https://doi.org/10.1098/rspa.2009.0119

    Article  CAS  Google Scholar 

  38. C.C. Busby, J.A. Creighton, Efficient gold and silver electrodes for surface enhanced Raman spectral studies of electrochemical systems: the behaviour of pyridine and naphthalene adsorbed on roughened gold electrodes. J. Electroanal. Chem. 140, 379–390 (1982). https://doi.org/10.1016/0022-0728(82)85180-2

    Article  CAS  Google Scholar 

  39. T.K. Venkatachalam, J. Barreto, U. Kreher, D.C. Reutens, L. Spiccia, Synthesis, characterization and coordination chemistry of dibenzofuran derivaties of 1,4,7,10-tetraazacyclododecane. Inorg. Chim. Acta 363, 2896–2904 (2010). https://doi.org/10.1016/j.ica.2010.04.039

    Article  CAS  Google Scholar 

  40. A. Adenier, M.M. Chehimi, I. Gallardo, J. Pinson, N. Vilà, Electrochemical oxidation of aliphatic amines and their attachment to carbon and metals surfaces. Langmuir 20, 8243–8253 (2004). https://doi.org/10.1021/la049194c

    Article  CAS  PubMed  Google Scholar 

  41. B.F. Liang, C.S. Chung, Dissociation and isomerization kinetics of (meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)copper(II) (Blue) cation in strongly acidic, aqueous media. Inorg. Chem. 20, 2152–2155 (1981). https://doi.org/10.1021/ic50221a040

    Article  CAS  Google Scholar 

  42. R.W. Hay, M.P. Pujari, The dissociation of [Cu(cyclen)]2+ in acid solution. A kinetic study. Inorg. Chim. Acta 100, L1–L3 (1985). https://doi.org/10.1016/S0020-1693(00)85272-X

    Article  CAS  Google Scholar 

  43. A.P. Leugger, L. Hertli, T.A. Kaden, Metal complexes with macrocyclic ligands. XI1). ring size effect on the complexation rates with transition metal ions. Helv. Chim. Acta 61, 2296–2306 (1978). https://doi.org/10.1002/hlca.19780610703

    Article  CAS  Google Scholar 

  44. P. Schultz-Grunow, T.A. Kaden, Metal complexes with macrocyclic ligands X1). on the metal complexation kinetics of two N4-macrocycles containing a pyridine ring. Helv. Chim. Acta 61, 2291–2296 (1978). https://doi.org/10.1002/hlca.19780610702

    Article  CAS  Google Scholar 

  45. A. Bianchi, M. Micheloni, P. Paoletti, Thermodynamic aspects of the polyazacycloalkane complexes with cations and anions. Coord. Chem. Rev. 110, 17–113 (1991). https://doi.org/10.1016/0010-8545(91)80023-7

    Article  CAS  Google Scholar 

  46. M. Kodama, E. Kimura, Thermodynamic and kinetic effects of 13-membered macrocycles. Polarographic studies of 1,4,7,10-tetra-azacyclotridecanecopper (II) . J.C.S Dalton Trans 2, 1720–1724 (1976). https://doi.org/10.1039/dt9760001720

    Article  Google Scholar 

Download references

Funding

The authors thank CNRS and DGRST for their financial support through PICS 2017-2020 # 226221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Jaffrezic-Renault.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touzi, H., Haj Said, A., Chevalier, Y. et al. Effect of Copper on the Oxidation Mechanisms of Tertiary and Secondary Amines of Methyl-naphthyl- cyclen-Modified Gold Electrodes. J Inorg Organomet Polym 31, 3011–3026 (2021). https://doi.org/10.1007/s10904-020-01864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01864-4

Keywords

Navigation