Skip to main content
Log in

Contactless Visible Luminescence Thermometry Based on β-Phase Zinc Silicate Confined in Silica Glass Matrix

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanophosphors zinc silicate β-phase in glass matrix with adequate manganese concentration were synthesized by a sol–gel method in three steps. In the first one, a sol-gel process was used for the synthesis of ZnO:Mn nanopowder. In the second one, the elaborated nanopowder was incorporated in silica aerogel monolith using supercritical conditions of ethanol and in the third step, a simple solid-solid reaction under natural atmosphere for 2 h at 1500 °C was performed. The obtained samples are composed by grains with an average size of about 70 nm in a triclinic phase dispersed in silica host matrix. This protocol leads to a very stable 15 at.% Mn doped zinc silicate β-phase at high temperature. The analysis of the obtained nanophosphor material showed a strong broad yellow emission at 584 nm attributed to 4T1(4G) to 6A1(6S) transition. The intensity and the time decay of this yellow emission depend on the measurement temperature. In fact, the decreases rate of the PL intensity is of 12.7% and the rate of lifetime change is of about 2.7%. These results are considered as promising values compared to those obtained until now. These two potential behaviours make it possible to predict the use of this material in various technological applications, particularly in contactless luminescence thermometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Lojpur, M.G. Nikoli, D. Jovanovi, M. Medi, Ž. Anti, M.D. Dramianin, Appl. Phys. Lett. 103, 141912 (2013)

    Article  Google Scholar 

  2. H. Zhang, Z. Gao, G. Li, Y. Zhu, S. Liu, K. Li, Y. Liang, Chem. Eng. J. 380, 122491 (2020)

    Article  CAS  Google Scholar 

  3. C.D.S. Brites, S. Balabhadra, L.D. Carlos, Adv. Opt. Mat. 7, 1801239 (2019)

    Article  Google Scholar 

  4. K. Omri, A. Alyamani, L. El Mir, Appl. Phys. A Mater. Sci. Process. 124, 215 (2018)

    Article  CAS  Google Scholar 

  5. J. El Ghoul, K. Omri, L. El Mir, C. Barthou, S. Alaya, J. Lumin. 132, 2288 (2012)

    Article  Google Scholar 

  6. S.F. Collins, G.W. Baxter, S.A. Wade, T. Sun, K.T.V. Grattan, Z.Y. Zhang, A.W. Palmer, J. Appl. Phys. 84, 4649 (1998)

    Article  CAS  Google Scholar 

  7. M. Gon, K. Tanaka, Y. Chujo, Bull. Chem. Soc. Jpn. 92, 7 (2019)

    Article  CAS  Google Scholar 

  8. L. El Mir, A. Amlouk, C. Barthou, J. Phys. Chem. Solids 67, 2395 (2006)

    Article  Google Scholar 

  9. Z. Ben Ayadi, H. Mahdhi, K. Djessas, J.L. Gauffier, L. El Mir and S. Alaya. Thin sold Films 553, 123–126 (2014)

    Article  CAS  Google Scholar 

  10. J. El Ghoul, M. Kraini, L. El Mir, J. Mater Sci, Mater Electron 26, 2555–2562 (2015)

    Article  Google Scholar 

  11. A. Khalid, K. Kontis, Sensors 8, 5673 (2008)

    Article  CAS  Google Scholar 

  12. M. Takesue, A. Suino, Y. Hakuta, H. Hayashi, R.L. Smith, J. Solid State Chem. 181, 1307 (2008)

    Article  CAS  Google Scholar 

  13. N. Taghavinia, G. Lerondel, H. Makino, A. Yamamoto, T. Yao, Y. Kawazoe, T. Goto, Nanotechnology 12, 547 (2001)

    Article  CAS  Google Scholar 

  14. Q.Y. Zhang, K. Pita, C.H. Kam, J. Phys. Chem. Solids 64, 333 (2003)

    Article  CAS  Google Scholar 

  15. L. El Mir, J. Mater. Sci. Mater. Electron. 29, 20493 (2018)

    Article  Google Scholar 

  16. L. El Mir, K. Omri, J. El Ghoul, A.S. AL-Hobaib, H. Dahman, C. Barthou, Superlattice. Microst. 65, 248 (2014)

    Article  Google Scholar 

  17. R. Selomulya, S. Ski, K. Pita, C.H. Kam, Q.Y. Zhang, S. Buddhudu, Mater. Sci. Eng. B 100, 136 (2003)

    Article  Google Scholar 

  18. L. El Mir, K. Omri, Superlattice. Microst. 75, 89 (2014)

    Article  Google Scholar 

  19. L. El Mir, A. Amlouk, C. Barthou, S. Alaya, J. Physica B 388, 412 (2007)

    Article  Google Scholar 

  20. L. El Mir, K. Omri, J. Lumin. 203, 336 (2018)

    Article  Google Scholar 

  21. B.D. Cullity, Elements of X-ray Diffractions, Addison-Wesley, Reading, MA 102 (1978)

  22. K. Omri, J. El Ghoul, A. Alyamani, C. Barthou, L. El Mir, Physica E 53, 48 (2013)

    Article  CAS  Google Scholar 

  23. S. Karamat, S. Mahmood, J.J. Lin, Z.Y. Pan, P. Lee, T.L. Tan, S.V. Springhama, R.V. Ramanujan, R.S. Rawat, Appl. Surf. Sci. 254, 7285 (2008)

    Article  CAS  Google Scholar 

  24. K.P. Bhatti, S. Chaudhary, D.K. Pandya, S.C. Kashyap, Solid State Commun. 136, 384 (2005)

    Article  CAS  Google Scholar 

  25. J. Han, P. Mantas, A. Senos, J. Eur. Ceram. Soc. 20, 2753 (2000)

    Article  CAS  Google Scholar 

  26. K.K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H.S. Nagaraja, P. Poornesh, Dhananjaya Kekuda. Opt. Mater. 35, 431 (2013)

    Article  CAS  Google Scholar 

  27. H.P. Rooksby, A.H. McKeag, Trans. Faraday Soc. 37, 308 (1941)

    Article  CAS  Google Scholar 

  28. M. Mai, C. Feldmann, J. Solid State Sciences 11, 528 (2009)

    Article  CAS  Google Scholar 

  29. Z. Li, H. Zhang, H. Fu, J. Lumin. 135, 79 (2013)

    Article  CAS  Google Scholar 

  30. Y. Jiang, J. Chen, Z. Xie, L. Zheng, Mater. Chem. Phys. 120, 313 (2010)

    Article  CAS  Google Scholar 

  31. C. Barthou, J. Benoit, P. Benalloul, A. Morell, J. Electrochem. Soc. 141, 524 (1994)

    Article  CAS  Google Scholar 

  32. K.C. Mishra, K.H. Johnson, B.G. DeBoer, J.K. Berkowitz, J. Olsen, E.A. Dale, J. Lumin. 47, 197 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. El Mir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Mir, L. Contactless Visible Luminescence Thermometry Based on β-Phase Zinc Silicate Confined in Silica Glass Matrix. J Inorg Organomet Polym 31, 2648–2653 (2021). https://doi.org/10.1007/s10904-020-01849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01849-3

Keywords

Navigation