Skip to main content
Log in

Adsorptive Mechanism of Chromium Adsorption on Siltstone–Nanomagnetite–Biochar Composite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, the potential of a novel and highly efficient composite of Eleocharis dulcis biochar with magnetite nanoparticles and siltstone was explored for removing chromium from water. Characterization of the prepared biochar composite was carried out using thermal gravimetric analysis (TGA), X-ray photon spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy, point of zero charge and BET. XRD confirmed magnetite and quartz to be the main phases in biochar composite. TGA results showed higher thermal stability of the composite after the addition of siltstone. Batch adsorption mode was employed for studying the adsorption capacity of sample for the decontamination of chromium as a function of concentrations, time, temperatures and pHs. Kinetic modelling confirmed pseudo second order to fit best to the kinetic data for chromium adsorption on the composite biochar. An increase of adsorption was observed with the rise in temperature from 303 to 318 K showing the endothermic nature of the process whereas pH study showed higher removal efficiency of chromium in the acidic pH range. Langmuir model was applicable to the data with higher value of correlation. The thermodynamic parameter ΔH° (40.46 kJ mol−1) and negative but higher values of (ΔG°) shows the endothermic and spontaneous nature of the adsorption process respectively. Higher value of activation energy (15.08 kJ mol−1) confirmed the chemical nature of the process. Post adsorption FTIR and XPS confirmed the adsorption of chromium on the surface of the composite. The adsorption capacity obtained in the present study was found to be higher as compared to many other reported adsorbents used for chromium removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Yang, B. Hou, J. Wang et al., Nanomaterials for the removal of heavy metals from wastewater. (2019). https://doi.org/10.3390/nano9030424

  2. H. Park, L.L. Tavlarides, Adsorption of chromium(VI) from aqueous solutions using an imidazole functionalized adsorbent. Ind. Eng. Chem. Res. 47, 3401–3409 (2008)

    Article  CAS  Google Scholar 

  3. M.A.K. Saravanakumar, E.J.V. Muthuraj, Synthesis and characterization of 1D-MoO3 nanorods using Abutilon indicum extract for the photoreduction of hexavalent chromium. J Inorg Organomet Polym Mater (2018). https://doi.org/10.1007/s10904-018-0970-0

    Article  Google Scholar 

  4. J. Ifthikar, J. Wang, Q. Wang et al., Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.03.133

    Article  PubMed  Google Scholar 

  5. N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakuamr, Plam oil empty fruit bunch based magnetic biochar composite comparison for synthesis by microwave-assisted and conventional heating. J. Anal. Appl Pyrolysis (2016). https://doi.org/10.1016/j.jaap.2016.06.026

    Article  Google Scholar 

  6. B. Zhang, Y. Wu, Y. Fan, Synthesis of novel magnetic-NiFe2O4 nanocomposite grafted chitosan and the adsorption mechanism of Cr (VI). J. Inorg. Organomet. Polym. Mater. (2018). https://doi.org/10.1007/s10904-018-0987-4

    Article  Google Scholar 

  7. Y. Dong, RSC Adv. (2019). https://doi.org/10.1039/c9ra05251h

    Article  Google Scholar 

  8. J. Han, G. Zhang, L. Zhou et al., Interfaces: adsorption, reactions, films, forces, measurement techniques, charge transfer, electrochemistry, electrocatalysis, energy production and storage waste carton-derived nanocomposites for efficient removal of hexavalent chromium. (2018). https://doi.org/10.1021/acs.langmuir.8b00225

  9. C. Imawan, Y. Pr, Synthesis of C-4-hydroxy-3-methoxyphenyl calix[4] resorcinarene and its application as adsorbent for lead(II), copper(II) and chromium(III). Bull. Chem. Soc. Jpn. 92, 825–831 (2019). https://doi.org/10.1246/bcsj.20180323

    Article  CAS  Google Scholar 

  10. M. Imran, A.U. Islam, M.A. Tariq et al., Synthesis of magnetite-based nanocomposites for effective removal of brilliant green dye from wastewater. Environ. Sci. Pollut. Res. 26, 24489–24502 (2019)

    Article  CAS  Google Scholar 

  11. M.I. Inyang, B. Gao, Y. Yao et al., A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 46, 406 (2015). https://doi.org/10.1080/10643389.2015.1096880

    Article  CAS  Google Scholar 

  12. J. Ji, H. Xiong, Z. Zhu et al., Fabrication of polypyrrole/chitosan nanocomposite aerogel monolith for removal of Cr(VI). J. Polym. Environ. 26, 1979–1985 (2018). https://doi.org/10.1007/s10924-017-1095-1

    Article  CAS  Google Scholar 

  13. M.E. Mahmoud, G.M. Nabil, S.M.E. Mahmoud, Journal of environmental chemical engineering high performance nano-zirconium silicate adsorbent for efficient removal of copper(II), cadmium(II) and lead(II). Biochem. Pharmacol. (2014). https://doi.org/10.1016/j.jece.2014.11.027

    Article  Google Scholar 

  14. A.H. Sulaymon, B.A. Abid, J.A. Al-Najar, Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers. Chem. Eng. J. 155, 647–653 (2009). https://doi.org/10.1016/j.cej.2009.08.021

    Article  CAS  Google Scholar 

  15. S.S. Thavamani, R. Rajkumar, Removal of Cr(VI), Cu(II), Pb(II) and Ni(II) from aqueous solutions by adsorption on alumina. Res. J. Chem. Sci. 3, 44–48 (2013)

    Google Scholar 

  16. X. Tuo, B. Li, X. Yu et al., Facile synthesis of magnetic polypyrrole composite nanofibers and their application in Cr(VI) removal. Poly. Compos. 39, 1507–1513 (2016)

    Article  Google Scholar 

  17. P. Wang, I.M.C. Lo, Synthesis of mesoporous magnetic g-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res 43, 3727–3734 (2009). https://doi.org/10.1016/j.watres.2009.05.041

    Article  CAS  PubMed  Google Scholar 

  18. Y. Wu, H. Pang, Y. Liu et al., Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ. Pollut. 246, 608–620 (2019). https://doi.org/10.1016/j.envpol.2018.12.076

    Article  CAS  PubMed  Google Scholar 

  19. L. Yan, L. Kong, Z. Qu, et al., Magnetic biochar decorated with ZnS nanocrytals for Pb(II) removal (2014).

  20. P.N. Dave, L.V. Chopda, Application of iron oxide nanomaterials for the removal of heavy metals. J. Nanotechnol. (2014). https://doi.org/10.1155/2014/398569

    Article  Google Scholar 

  21. Z. Wan, D.-W. Cho, D.C.W. Tsang et al., Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environ. Pollut. (2019). https://doi.org/10.1016/j.envpol.2019.01.047

    Article  PubMed  Google Scholar 

  22. T.S.A. Islam, Y. Zaker, M.A. Hossain, M.S. Islam, Physico-chemical characterization of silt prepared from Bijoypur soil. J. Asiatic Soc. Bangl. 39, 53–60 (2013)

    Article  Google Scholar 

  23. M.I. Majeed, J. Guo, W. Yan, B. Tan, Preparation of magnetic iron oxide nanoparticles (MIONs) with improved saturation magnetization using multifunctional polymer ligand. Polymers (Basel) 8, 1–16 (2016). https://doi.org/10.3390/polym8110392

    Article  CAS  Google Scholar 

  24. E.N. Bakatula, D. Richard, C.M. Neculita, G.J. Zagury, Determination of point of zero charge of natural organic materials. Environ. Sci. Pollut. Res. 25, 7823–7833 (2018). https://doi.org/10.1007/s11356-017-1115-7

    Article  CAS  Google Scholar 

  25. M. Rama Chandraiah, Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium. Alexandria Eng. J. 55, 619–625 (2016). https://doi.org/10.1016/j.aej.2015.12.015

    Article  Google Scholar 

  26. C. Tan, Z. Zeyu, X. Sai et al., Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour. Technol. (2015). https://doi.org/10.1016/j.biortech.2015.04.115

    Article  PubMed  Google Scholar 

  27. X. Tan, Y. Liu, G. Zeng et al., Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85 (2015). https://doi.org/10.1016/j.chemosphere.2014.12.058

    Article  CAS  PubMed  Google Scholar 

  28. S. Ud, D. Ajmal, A. Zain et al., Investigation on cadmium ions removal from water by a nanomagnetite based biochar derived from Eleocharis dulcis. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01758-5

    Article  Google Scholar 

  29. M. Luo, H. Lin, B. Li et al., A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour. Technol. 259, 312–318 (2018). https://doi.org/10.1016/j.biortech.2018.03.075

    Article  CAS  PubMed  Google Scholar 

  30. K.H. Shah, S. Ali, M. Waseem et al., Native and magnetic oxide nanoparticles (Fe3O4) impregnated bentonite clays as economic adsorbents for Cr(III) removal. J Solution Chem 48, 1640–1656 (2019). https://doi.org/10.1007/s10953-019-00912-z

    Article  CAS  Google Scholar 

  31. M. Waseem, S. Mustafa, A. Naeem et al., Physiochemical properties of mixed oxides of iron and silicon. J. Non Cryst. Solids 356, 2704–2708 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.09.055

    Article  CAS  Google Scholar 

  32. N. Thi, V. Hoan, N. Thi et al., Fe3O4/reduced graphene oxide nanocomposite: synthesis and its application for toxic metal ion removal. J Chem 2016, 1–10 (2016). https://doi.org/10.1155/2016/2418172

    Article  CAS  Google Scholar 

  33. L. Yang, J. Tian, J. Meng, et al., Modification and characterization of Fe3O4 nanoparticles for use in adsorption of alkaloids. (2018). https://doi.org/10.3390/molecules23030562.

  34. X. Zhang, L. Zhang, A. Li, Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal. J. Environ. Manag. 206, 989–998 (2018). https://doi.org/10.1016/j.jenvman.2017.11.079

    Article  CAS  Google Scholar 

  35. D. Briggs, G. Beamson, XPS studies of the oxygen 1s and 2s levels in a wide range of functional polymers. Anal. Chem. 65, 1517–1523 (1993). https://doi.org/10.1021/ac00059a006

    Article  CAS  Google Scholar 

  36. Dong C, Chen C, Kao C, Chien C (2018) Remediation of PAH-contaminated estuary sediment. 1–13. https://doi.org/https://doi.org/10.3390/catal8020073

  37. H. Lyu, J. Tang, Y. Huang et al., Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem. Eng. J. 322, 516–524 (2017). https://doi.org/10.1016/j.cej.2017.04.058

    Article  CAS  Google Scholar 

  38. A. Miyakoshi, A. Ueno, M. Ichikawa, XPS and TPD characterization of manganese-substituted iron-potassium oxide catalysts which are selective for dehydrogenation of ethylbenzene into styrene. Appl. Catal. A Gen. 219, 249–258 (2001). https://doi.org/10.1016/S0926-860X(01)00697-4

    Article  CAS  Google Scholar 

  39. J.W. He, X. Xu, J.S. Corneille, D.W. Goodman, X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo(100) surface. Surf Sci 279, 119–126 (1992). https://doi.org/10.1016/0039-6028(92)90748-U

    Article  CAS  Google Scholar 

  40. J.H. Kwon, L.D. Wilson, R. Sammynaiken, Synthesis and characterization of magnetite and activated carbon binary composites. Synth Met 197, 8–17 (2014). https://doi.org/10.1016/j.synthmet.2014.08.010

    Article  CAS  Google Scholar 

  41. A. Shaaban, S. Se, N. Merry et al., Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Eng 68, 365–371 (2013). https://doi.org/10.1016/j.proeng.2013.12.193

    Article  CAS  Google Scholar 

  42. H. Deveci, Y. Kar, Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. J. Ind. Eng. Chem. 19, 190–196 (2013). https://doi.org/10.1016/j.jiec.2012.08.001

    Article  CAS  Google Scholar 

  43. J. Yang, M. Yu, W. Chen, Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. J. Ind. Eng. Chem. 21, 414–422 (2015). https://doi.org/10.1016/j.jiec.2014.02.054

    Article  CAS  Google Scholar 

  44. I. Enniya, L. Rghioui, A. Jourani, Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain. Chem. Pharm. 7, 9–16 (2018). https://doi.org/10.1016/j.scp.2017.11.003

    Article  Google Scholar 

  45. J.I.E. Chen, J. Shi, J. Tang, X. Lu, Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural. Environ. Sci. Technol. 40, 3064–3069 (2006). https://doi.org/10.1021/es052057x

    Article  CAS  PubMed  Google Scholar 

  46. T. Karthikeyan, S. Rajgopal, L.R. Miranda, Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 124, 192–199 (2005). https://doi.org/10.1016/j.jhazmat.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  47. Z. Khodaparast, S. Pashaei, S. Mohammadi et al., Fabrication of silver nanoparticles with antibacterial property and preparation of PANI/M/Al2O3/Ag nanocomposites adsorbent using biological synthesis with study on chromium removal from aqueous solutions. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01243-8

    Article  Google Scholar 

  48. D. Durano, A.W. Trochimczuk, U. Beker, Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer. Chem. Eng. J. 187, 193–202 (2012). https://doi.org/10.1016/j.cej.2012.01.120

    Article  CAS  Google Scholar 

  49. E.K. Goharshadi, M.B. Moghaddam, Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol. 12, 2153–2160 (2015). https://doi.org/10.1007/s13762-014-0748-z

    Article  CAS  Google Scholar 

  50. D. Mohan, S. Rajput, V.K. Singh et al., Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J. Hazard. Mater. 188, 319–333 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.127

    Article  CAS  PubMed  Google Scholar 

  51. G. Zelmanov, R. Semiat, Iron (Fe+3) oxide/hydroxide nanoparticles-based agglomerates suspension as adsorbent for chromium (Cr+6) removal from water and recovery. Sep. Purif. Technol. 80, 330–337 (2011). https://doi.org/10.1016/j.seppur.2011.05.016

    Article  CAS  Google Scholar 

  52. S.U. Din, T. Mahmood, A. Naeem et al., Detailed kinetics study of arsenate adsorption by a sequentially precipitated binary oxide of iron and silicon. Environ. Technol. (2017). https://doi.org/10.1080/09593330.2017.1385649

    Article  PubMed  Google Scholar 

  53. S.S. Baral, S.N. Das, P. Rath, Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Kinetics 31, 216–222 (2006). https://doi.org/10.1016/j.bej.2006.08.003

    Article  CAS  Google Scholar 

  54. S. Ud, T. Mahmood, A. Naeem et al., A novel insight into the adsorption interactions of arsenate with a Fe-Si binary oxide. Colloid J. 81, 469–477 (2019). https://doi.org/10.1134/S1061933X19040045

    Article  Google Scholar 

  55. J. Zhou, Y. Wang, J. Wang et al., Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres. J. Colloid Interface Sci. 462, 200–207 (2016). https://doi.org/10.1016/j.jcis.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  56. F. Zhu, S. Ma, T. Liu, X. Deng, Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J. Clean Prod. 174, 184–190 (2018). https://doi.org/10.1016/j.jclepro.2017.10.302

    Article  CAS  Google Scholar 

  57. B. Choudhary, D. Paul, A. Singh, T. Gupta, Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application. Environ. Sci. Pollut. Res. 24, 16786–16797 (2017). https://doi.org/10.1007/s11356-017-9322-9

    Article  CAS  Google Scholar 

  58. S. Xu, W. Yu, S. Liu et al., Adsorption of hexavalent chromium using banana pseudostem biochar and its mechanism. Sustain (2018). https://doi.org/10.3390/su10114250

    Article  Google Scholar 

  59. L. Zhou, Y. Liu, S. Liu et al., Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour. Technol. 218, 351–359 (2016). https://doi.org/10.1016/j.biortech.2016.06.102

    Article  CAS  PubMed  Google Scholar 

  60. X. Dong, L.Q. Ma, Y. Li, Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 190, 909–915 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  61. M. Jain, V.K. Garg, K. Kadirvelu, Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J. Hazard. Mater. 162, 365–372 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.048

    Article  CAS  PubMed  Google Scholar 

  62. G. Dognani, P. Hadi, H. Ma et al., Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chem. Eng. J. 372, 341–351 (2019). https://doi.org/10.1016/j.cej.2019.04.154

    Article  CAS  Google Scholar 

  63. X. Li, X. Gao, L. Ai, J. Jiang, Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem Eng J 274, 238–246 (2015). https://doi.org/10.1016/j.cej.2015.03.127

    Article  CAS  Google Scholar 

  64. Y. Lu, B. Jiang, L. Fang et al., High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere 152, 415–422 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  65. N. Zhao, Z. Yin, F. Liu et al., Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. Bioresour. Technol. 260, 294–301 (2018). https://doi.org/10.1016/j.biortech.2018.03.116

    Article  CAS  PubMed  Google Scholar 

  66. Z. Yang, J. Cao, Y. Chen et al., Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution. Microporous Mesoporous Mater. 277, 277–285 (2019). https://doi.org/10.1016/j.micromeso.2018.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Salah Ud Din is thankful to the Higher Education Commission of Pakistan for research funding under National research program for universities (NRPU) under Project No. 8376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Ud Din.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, S.U., Khan, M.S., Hussain, S. et al. Adsorptive Mechanism of Chromium Adsorption on Siltstone–Nanomagnetite–Biochar Composite. J Inorg Organomet Polym 31, 1608–1620 (2021). https://doi.org/10.1007/s10904-020-01829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01829-7

Keywords

Navigation