Skip to main content
Log in

The Synthesis of rGO/Ni/Co Composite and Electrochemical Determination of Dopamine

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, a composite material (rGO/Ni/Co) was synthesized by a hydrothermal method and high temperature annealing, and used for the determination of dopamine (DA). Surface morphology and structure of the rGO/Ni/Co were characterized by Scanning electron microscope (SEM), Transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). The effects of different pH, scanning rate and interfering substances on the electrochemical properties of dopamine were discussed. The electrochemical test results show that the rGO/Ni/Co/GCE electrode has excellent electrocatalytic activity for dopamine. Under the optimized conditions, the linear range of detection is 10 µmol/L-2250 µmol/L (r = 0.99837), the detection limit is 0.119 µmol/L, and the signal-to-noise ratio is 3. The interference test showed, that most of the ions did not show obvious influence on the detection of DA, indicating that the prepared electrode has selectivity for the detection of DA. Moreover, the composite has good magnetic properties and is convenient for sample separation and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. M. Sajid, M.K. Nazal, M. Mansha et al., Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC Trends Anal. Chem. 76, 15–29 (2016)

    CAS  Google Scholar 

  2. P.Y. Chen, R. Vittal, P.C. Nien et al., Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion®. Biosens. Bioelectron. 24(12), 3504–3509 (2009)

    CAS  PubMed  Google Scholar 

  3. H. Bernheimer, W. Birkmayer, O. Hornykiewicz et al., Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations☆. J. Neurol. Sci. 20(4), 415–455 (1973)

    CAS  PubMed  Google Scholar 

  4. W.T. Dauer, S. Przedborski, Parkinson’s disease: mechanisms and models. Neuron 39(6), 889–909 (2003)

    CAS  PubMed  Google Scholar 

  5. Q. Huang, H. Zhang, S. Hu et al., A sensitive and reliable dopamine biosensor was developed based on the Au@ carbon dots–chitosan composite film. Biosens. Bioelectron. 52, 277–280 (2014)

    CAS  PubMed  Google Scholar 

  6. N. Thakur, S. Das Adhikary, M. Kumar et al., Ultrasensitive and highly selective electrochemical detection of dopamine using poly (ionic liquids)–cobalt Polyoxometalate/CNT composite. ACS Omega 3(3), 2966–2973 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. R.M. Wightman, L.J. May, A.C. Michael, Detection of dopamine dynamics in the brain. Analyt. Chem. 60(13), 769A-793A (1988)

    CAS  Google Scholar 

  8. L. Li, H. Liu, Y. Shen et al., Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal. Chem. 83(3), 661–665 (2011)

    CAS  PubMed  Google Scholar 

  9. J. Zhao, L. Zhao, C. Lan et al., Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sens. Actuators B 223, 246–251 (2016)

    CAS  Google Scholar 

  10. H. Li, C. Li, Z. Yan et al., Simultaneous monitoring multiple neurotransmitters and neuromodulators during cerebral ischemia/reperfusion in rats by microdialysis and capillary electrophoresis. J. Neurosci. Methods 189(2), 162–168 (2010)

    CAS  PubMed  Google Scholar 

  11. W.J. Barreto, S.R.G. Barreto, R.A. Ando et al., Raman, IR, UV–vis and EPR characterization of two copper dioxolene complexes derived from L-dopa and dopamine. Spectrochim. Acta Part A 71(4), 1419–1424 (2008)

    Google Scholar 

  12. E. Cudjoe, J. Pawliszyn, Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. J. Chromatogr. A 1341, 1–7 (2014)

    CAS  PubMed  Google Scholar 

  13. A. Numan, M.M. Shahid, F.S. Omar et al., Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sens. Actuators B 238, 1043–1051 (2017)

    CAS  Google Scholar 

  14. M. Altun, M.B. Kamac, A. Bilgi et al., Dopamine biosensor based on screen-printed electrode modified with reduced graphene oxide, polyneutral red and gold nanoparticle. Int. J. Environ. Anal. Chem. 100(4), 451–467 (2020)

    CAS  Google Scholar 

  15. Q. He, G. Li, X. Liu et al., Morphologically tunable MnO2 nanoparticles fabrication, modelling and their influences on electrochemical sensing performance toward dopamine. Catalysts 2018, 8(8)

  16. N. Thomas, T. Shimna, J. Thomas et al., Nanomolar detection of dopamine at ZnO/graphene modified carbon paste electrode. J. Inorg. Organomet. Polym Mater. 29(5), 1728–1737 (2019)

    CAS  Google Scholar 

  17. E. Manikandan, G. Kavitha, J. Kennedy, Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40(10), 16065–16070 (2014)

    CAS  Google Scholar 

  18. K. Kaviyarasu, E. Manikandan, J. Kennedy et al., Synthesis and analytical applications of photoluminescent carbon nanosheet by exfoliation of graphite oxide without purification. J. Mater. Sci. 27(12), 13080–13085 (2016)

    CAS  Google Scholar 

  19. J. Kennedy, F. Fang, J. Futter et al., Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 79–84 (2017)

    CAS  Google Scholar 

  20. K. Krishnamoorthy, M. Veerapandian, K. Yun et al., The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)

    CAS  Google Scholar 

  21. B.S. TK, A.B. Nair, B.T. Abraham et al., Microwave exfoliated reduced graphene oxide epoxy nanocomposites for high performance applications. Polymer 55(16), 3614–3627 (2014)

    CAS  Google Scholar 

  22. K.S. Novoselov, V.I. Fal, L. Colombo et al., A roadmap for graphene. Nature 490(7419), 192 (2012)

    CAS  PubMed  Google Scholar 

  23. C. Sengottaiyan, R. Jayavel, R.G. Shrestha et al., Indium oxide/carbon nanotube/reduced graphene oxide ternary nanocomposite with enhanced electrochemical supercapacitance. Bull. Chem. Soc. Jpn. 92(3), 521–528 (2019)

    CAS  Google Scholar 

  24. K. Le, Z. Wang, F. Wang et al., Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 48(16), 5193–5202 (2019)

    CAS  PubMed  Google Scholar 

  25. C.N. Rao, K. Pramoda, Borocarbonitrides, BxCyNz, 2D nanocomposites with novel properties. Bull. Chem. Soc. Jpn. 92(2), 441–468 (2019)

    CAS  Google Scholar 

  26. M. Idrees, S. Batool, J. Kong et al., Polyborosilazane derived ceramics---nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochimica Acta 2019;925–937

  27. S.K. Kandasamy, K. Kandasamy, Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: a review. J. Inorg. Organomet. Polym Mater. 28(3), 559–584 (2018)

    CAS  Google Scholar 

  28. R. Rajendran, L.K. Shrestha, R.M. Kumar et al., Composite nanoarchitectonics for ternary systems of reduced graphene oxide/carbon nanotubes/nickel oxide with enhanced electrochemical capacitor performance. J. Inorg. Organomet. Polym Mater. 25(2), 267–274 (2015)

    CAS  Google Scholar 

  29. M. Khan, A.B. Yousaf, M. Chen et al., Mixed-phase Pd–Pt bimetallic alloy on graphene oxide with high activity for electrocatalytic applications. J. Power Sources 282, 520–528 (2015)

    CAS  Google Scholar 

  30. X.Y. Yan, X.L. Tong, Y.F. Zhang et al., Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. Chem. Commun. 48(13), 1892–1894 (2012)

    CAS  Google Scholar 

  31. C.H. Liu, R.H. Liu, Q.J. Sun et al., Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale 7(14), 6356–6362 (2015)

    CAS  PubMed  Google Scholar 

  32. L. Rout, A. Kumar, R.S. Dhaka et al., Bimetallic Au-Cu alloy nanoparticles on reduced graphene oxide support: synthesis, catalytic activity and investigation of synergistic effect by DFT analysis. Appl. Catal. A 538, 107–122 (2017)

    CAS  Google Scholar 

  33. Q. Wang, Z. Zhang, J. Liu et al., Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: highly efficient hydrolysis of ammonia borane. Mater. Chem. Phys. 204, 58–61 (2018)

    CAS  Google Scholar 

  34. H.L. Jiang, Q. Xu, Recent progress in synergistic catalysis over heterometallic nanoparticles. J. Mater. Chem. 21(36), 13705–13725 (2011)

    CAS  Google Scholar 

  35. A.B. Vysakh, C.L. Babu, C.P. Vinod, Demonstration of synergistic catalysis in Au@ Ni bimetallic core–shell nanostructures. J. Phys. Chem. C 119(15), 8138–8146 (2015)

    CAS  Google Scholar 

  36. M.S. Rahmanifar, H. Hesari, A. Noori et al., A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim. Acta 275, 76–86 (2018)

    CAS  Google Scholar 

  37. Z. Chen, R. Wu, Y. Liu et al., Ultrafine Co nanoparticles encapsulated in carbon-nanotubes‐grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30(30), 1802011 (2018)

    Google Scholar 

  38. P. Pascariu, I.V. Tudose, M. Suchea et al., Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. 448, 481–488 (2018)

    CAS  Google Scholar 

  39. Y. Yusran, D. Xu, Q. Fang et al., MOF-derived Co@ NC nanocatalyst for catalytic reduction of 4-nitrophenol to 4-aminophenol. Microporous Mesoporous Mater. 241, 346–354 (2017)

    CAS  Google Scholar 

  40. J. Garcia-Torres, C. Crean, E. Vallés, Co-Ni-carbon flexible composite fibres for directional magnetic actuation. Mater. Des. 141, 9–16 (2018)

    CAS  Google Scholar 

  41. Y. Fu, H.Y. Yu, C. Jiang et al., NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv. Func. Mater. 28(9), 1705094 (2018)

    Google Scholar 

  42. H. Wang, X. Li, X. Lan et al., Supported ultrafine NiCo bimetallic alloy nanoparticles derived from bimetal–organic frameworks: a highly active catalyst for furfuryl alcohol hydrogenation. ACS Catalysis 8(3), 2121–2128 (2018)

    CAS  Google Scholar 

  43. J. Chen, Y. Li, L. Huang et al., High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81, 826–834 (2015)

    CAS  Google Scholar 

  44. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    CAS  Google Scholar 

  45. Y. Yao, H. Chen, C. Lian et al., Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J. Hazard. Mater. 314, 129–139 (2016)

    CAS  PubMed  Google Scholar 

  46. Y. Zhang, N. Zhang, Z.R. Tang et al., Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6(11), 9777–9789 (2012)

    CAS  PubMed  Google Scholar 

  47. Z. Wang, Y. Hu, W. Yang et al., Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensors 12(4), 4860–4869 (2012)

    CAS  PubMed  Google Scholar 

  48. G. Jiang, T. Jiang, H. Zhou et al., Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Adv 5(12), 9064–9068 (2015)

    CAS  Google Scholar 

  49. Z.N. Huang, J. Zou, J. Teng et al., A novel electrochemical sensor based on self-assembled platinum nanochains-multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid. Ecotoxicol. Environ. Saf. 172, 167–175 (2019)

    CAS  PubMed  Google Scholar 

  50. H.S. GJang, D. Kim, C. Lee et al., Nafion coated Au nanoparticle-graphene quantum dot nanocomposite modified working electrode for voltammetric determination of dopamine. Inorg. Chem. Commun. 105, 174–181 (2019)

    Google Scholar 

  51. B. Liu, X. Ouyang, Y. Ding et al., Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146, 114–121 (2016)

    CAS  PubMed  Google Scholar 

  52. W. Zhang, L. Liu, Y. Li et al., Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid. Biosens. Bioelectron. 121, 96–103 (2018)

    CAS  PubMed  Google Scholar 

  53. K. Krishnamoorthy, V. Sudha, S.M.S. Kumar et al., Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode. J. Alloys Compd. 748, 338–347 (2018)

    CAS  Google Scholar 

  54. W. Liu, J. Qian, K. Wang et al., Magnetically separable Fe3O4 nanoparticles-decorated reduced graphene oxide nanocomposite for catalytic wet hydrogen peroxide oxidation. J. Inorg. Organomet. Polym Mater. 23(4), 907–916 (2013)

    CAS  Google Scholar 

  55. C. Sengottaiyan, R. Jayavel, R.G. Shrestha et al., Electrochemical supercapacitance properties of reduced graphene oxide/Mn2O3:Co3O4 nanocomposite. J. Inorg. Organomet. Polym Mater. 27(2), 576–585 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Kang, X., Fu, F. et al. The Synthesis of rGO/Ni/Co Composite and Electrochemical Determination of Dopamine. J Inorg Organomet Polym 30, 4269–4277 (2020). https://doi.org/10.1007/s10904-020-01738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01738-9

Keywords

Navigation