Skip to main content
Log in

Alkali Metal Doping for Enhancement of Nonlinear Optical Properties of Dicyclopenta[4,3,2,1-ghi:4′,3′,2′,1′-pqr]perylene: A New Bowl-Shaped Fragment of Fullerene C70

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The electronic properties and the first static hyperpolarizability of a new bowl-shaped of C70 fullerene, the dicyclopenta[4,3,2,1-ghi:4′,3′,2′,1′-pqr]perylene (2CP-Per = C22H10) doped with alkali metals (Li, Na and K) have been investigated employing the density functional theory. Six stable conformations are obtained for Li@2CP-Per, whereas five and four stable structures are formed for Na@2CP-Per and K@2CP-Per, respectively. The nonlinear optical properties of these structures are remarkably to interaction with the type of alkali metals and their relative location at the curved surface of 2CP-Per. The adsorption of Li, Na and K atoms on the surfaces of 2CP-Per narrows the HOMO–LUMO gap of the considered structures. Moreover it is observed that the doping with alkali metals enhances the first hyperpolarizability (β0) of 2CP-Per nanobowl. The β0 value of several doped-structures increases to 40 times of pristine 2CP-Per structure.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.T. Wu, J.S. Siegel, Chem. Rev. (2006). https://doi.org/10.1021/cr050554q

    Article  PubMed  Google Scholar 

  2. Y.T. Wu, J.S. Siegel, Top. Curr. Chem. (2014). https://doi.org/10.1007/128_2014_548

    Article  PubMed  Google Scholar 

  3. V.M. Tsefrikas, L.T. Scott, Chem. Rev. (2006). https://doi.org/10.1021/cr050553y

    Article  PubMed  Google Scholar 

  4. T. Amaya, S. Seki, T. Moriuchi, K. Nakamoto, T. Nakata, H. Sakane, A. Saeki, S. Tagawa, T. Hirao, J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja805997v

    Article  PubMed  Google Scholar 

  5. B.M. Schmidt, S. Seki, B. Topolinski, K. Ohkubo, S. Fukuzumi, H. Sakurai, D. Lentz, Angew. Chem. Int. Ed. (2012). https://doi.org/10.1002/anie.201205757

    Article  Google Scholar 

  6. D. Miyajima, K. Tashiro, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja808396b

    Article  PubMed  Google Scholar 

  7. R. Chen, R.Q. Lu, P.C. Shi, X.Y. Cao, Chin. Chem. Lett. (2016). https://doi.org/10.1016/j.cclet.2016.06.033

    Article  Google Scholar 

  8. R. Chen, R.Q. Lu, K. Shi, F. Wu, H.X. Fang, Z.X. Niu, X.Y. Yan, M. Luo, X.C. Wang, C.Y. Yang, X.Y. Wang, B. Xu, H. Xia, J. Pei, X.Y. Cao, Chem. Commun. (2015). https://doi.org/10.1039/C5CC03550C

    Article  Google Scholar 

  9. K. Shi, T. Lei, X.Y. Wang, J.Y. Wang, J. Pei, Chem. Sci. (2014). https://doi.org/10.1039/C3SC52701H

    Article  PubMed  PubMed Central  Google Scholar 

  10. R.Q. Lu, W. Xuan, Y.Q. Zheng, Y.N. Zhou, X.Y. Yan, J.H. Dou, R. Chen, J. Pei, W. Weng, X.Y. Cao, RSC Adv. (2014). https://doi.org/10.1039/C4RA11824C

    Article  Google Scholar 

  11. L.G. Scanlon, P.B. Balbuena, Y. Zhang, G. Sandi, C.K. Back, W.A. Feld, J. Mack, M.A. Rottmayer, J.L. Riepenhoff, J. Phys. Chem. B (2006). https://doi.org/10.1021/jp0574403

    Article  PubMed  Google Scholar 

  12. E. Tahmasebi, Z. Biglari, E. Shakerzadeh, Vacuum (2017). https://doi.org/10.1016/j.vacuum.2016.11.027

    Article  Google Scholar 

  13. W.Q. Li, X. Zhou, Y. Chang, W.Q. Tian, X.D. Sun, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4802481

    Article  PubMed  PubMed Central  Google Scholar 

  14. Y. Zou, W. Zeng, T.Y. Gopalakrishna, Y. Han, Q. Jiang, J. Wu, J. Am. Chem. Soc. (2019). https://doi.org/10.1021/jacs.9b03169

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. Muhammad, H.L. Xu, R.L. Zhong, Z.M. Su, A.G. Al-Sehemi, A. Irfan, J. Mater. Chem. C (2013). https://doi.org/10.1039/C3TC31183J

    Article  Google Scholar 

  16. E. Tahmasebi, E. Shakerzadeh, Z. Biglari, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2015.12.001

    Article  Google Scholar 

  17. N. Otero, C. Pouchan, P. Karamanis, J. Mater. Chem. C (2017). https://doi.org/10.1039/C7TC01963G

    Article  Google Scholar 

  18. R.L. Zhong, H.L. Xu, S.L. Sun, Y.Q. Qiu, Z.M. Su, Chemistry (2012). https://doi.org/10.1002/chem.201201570

    Article  PubMed  Google Scholar 

  19. R.L. Zhong, H.L. Xu, Z.M. Su, Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/C6CP00647G

    Article  PubMed  Google Scholar 

  20. R.L. Zhong, H.L. Xu, Z.R. Li, Z.M. Su, J. Phys. Chem. Lett. (2015). https://doi.org/10.1021/jz502588x

    Article  PubMed  Google Scholar 

  21. W.M. Sun, X.H. Li, D. Wu, Y. Li, H.M. He, Z.R. Li, J.H. Chen, C.Y. Li, Dalton Trans. (2016). https://doi.org/10.1039/C6DT00342G

    Article  PubMed  PubMed Central  Google Scholar 

  22. A. Maria, J. Iqbal, R. Ludwig, Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2017.03.065

    Article  Google Scholar 

  23. Y. Arshad, S. Khan, M.A. Hashmi, K. Ayub, New J. Chem. (2018). https://doi.org/10.1039/C7NJ04971D

    Article  Google Scholar 

  24. M. Rérat, P.S. Karamanis, B. Civalleri, L. Maschio, V. Lacivita, B. Kirtman, Theor. Chem. Acc. (2018). https://doi.org/10.1007/s00214-017-2187-7

    Article  Google Scholar 

  25. F. Ma, Z.R. Li, Z.J. Zhou, D. Wu, Y. Li, Y.F. Wang, Z.S. Li, J. Phys. Chem. (2010). https://doi.org/10.1021/jp9116479

    Article  Google Scholar 

  26. J.S. Yang, K.L. Liau, C.Y. Li, M.Y. Chen, J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja0741022

    Article  PubMed  PubMed Central  Google Scholar 

  27. S.H. Lee, J.R. Park, M.Y. Jeong, H.M. Kim, S.J. Li, J. Song, S. Ham, S.J. Jeon, B.R. Cho, Chem. Phys. Chem. (2006). https://doi.org/10.1002/cphc.200500274

    Article  PubMed  Google Scholar 

  28. T.G. Zhang, Y. Zhao, I. Asselberghs, A. Persoons, K. Clays, M.T. Therien, J. Am. Chem. Soc. (2005). https://doi.org/10.1021/ja0402553

    Article  PubMed  PubMed Central  Google Scholar 

  29. W. Chen, Z.R. Li, D. Wu, Y. Li, C.C. Sun, F.L. Gu, J. Am. Chem. Soc. (2005). https://doi.org/10.1021/ja050601w

    Article  PubMed  PubMed Central  Google Scholar 

  30. H.L. Xu, Z.R. Li, D. Wu, B.Q. Wang, Y. Li, F.L. Gu, Y. Aoki, J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja068038k

    Article  PubMed  PubMed Central  Google Scholar 

  31. S. Muhammad, H. Xu, Y. Liao, Y. Kan, Z. Su, J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja9032023

    Article  PubMed  Google Scholar 

  32. M. Niu, G. Yu, G. Yang, W. Chen, X. Zhao, X. Huang, Inorg. Chem. (2014). https://doi.org/10.1021/ic4022917

    Article  PubMed  Google Scholar 

  33. E. Shakerzadeh, E. Tahmasebi, Z. Biglari, J. Mol. Liq. (2016). https://doi.org/10.1016/j.molliq.2016.05.090

    Article  Google Scholar 

  34. M. Solimannejad, R. Rahimi, S. Kamalinahad, J. Inorg. Organomet. Polym. (2017). https://doi.org/10.1007/s10904-017-0570-4

    Article  Google Scholar 

  35. G. Yu, X.R. Huang, W. Chen, C.C. Sun, J. Comput. Chem. (2011). https://doi.org/10.1002/jcc.21789

    Article  PubMed  Google Scholar 

  36. E. Shakerzadeh, Z. Biglari, E. Tahmasebi, Chem. Phys. Lett. (2016). https://doi.org/10.1016/j.cplett.2016.05.014

    Article  Google Scholar 

  37. Y.D. Song, L. Wang, L.M. Wu, Optik (2017). https://doi.org/10.1016/j.ijleo.2017.01.096

    Article  Google Scholar 

  38. F. Kazemimoghadam, E. Shakerzadeh, Chem. Phys. Lett. (2017). https://doi.org/10.1016/j.cplett.2017.04.027

    Article  Google Scholar 

  39. Y.D. Song, L. Wang, L.M. Wu, J. Mol. Model. (2017). https://doi.org/10.1007/s00894-017-3486-6

    Article  PubMed  Google Scholar 

  40. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. (2008). https://doi.org/10.1007/s00214-007-0310-x

    Article  Google Scholar 

  41. Y. Zhao, D.G. Truhlar, Acc. Chem. Res. (2008). https://doi.org/10.1021/ar700111a

    Article  PubMed  Google Scholar 

  42. Y. Zhao, D.G. Truhlar, J. Chem. Theory Comput. (2005). https://doi.org/10.1021/ct049851d

    Article  PubMed  Google Scholar 

  43. F. Ma, Z.J. Zhou, Y.T. Liu, Chem. Phys. Chem. (2012). https://doi.org/10.1002/cphc.201100907

    Article  PubMed  Google Scholar 

  44. F. Ma, Z.R. Li, Z.J. Zhou, D. Wu, Y. Li, Y.F. Wang, Z.S. Li, J. Phys. Chem. C (2010). https://doi.org/10.1021/jp9116479

    Article  Google Scholar 

  45. R.L. Zhong, H.L. Xu, S.L. Sun, Y.Q. Qiu, Z.M. Su, Chem. Eur. J. (2012). https://doi.org/10.1002/chem.201201570

    Article  PubMed  Google Scholar 

  46. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. (2010). https://doi.org/10.1063/1.3382344

    Article  PubMed  Google Scholar 

  47. O.W. Richardson, Phys. Rev. (1924). https://doi.org/10.1103/PhysRev.23.153

    Article  Google Scholar 

  48. T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. (2004). https://doi.org/10.1016/j.cplett.2004.06.011

    Article  Google Scholar 

  49. A. Alparone, Chem. Phys. Lett. (2013). https://doi.org/10.1016/j.cplett.2013.01.062

    Article  Google Scholar 

  50. T. Yanai, R.J. Harrison, N.C. Handy, Mol. Phys. (2005). https://doi.org/10.1063/1.1790931

    Article  Google Scholar 

  51. M.J.G. Peach, T. Helgaker, P. Sałek, T.W. Keal, O.B. Lutnæs, D.J. Tozer, N.C. Handy, Phys. Chem. Chem. Phys. (2006). https://doi.org/10.1039/B511865D

    Article  PubMed  Google Scholar 

  52. R. Kobayashi, R.D. Amos, Chem. Phys. Lett. (2006). https://doi.org/10.1016/j.cplett.2005.12.040

    Article  Google Scholar 

  53. D. Jacquemin, E.A. Perpète, M. Medved, G. Scalmani, M.J. Frisch, R. Kobayashi, C. Adamo, J. Chem. Phys. (2007). https://doi.org/10.1063/1.2741246

    Article  PubMed  Google Scholar 

  54. A. Limacher, K.V. Mikkelsen, H.P. Lüthi, J. Chem. Phys. (2009). https://doi.org/10.1063/1.3139023

    Article  PubMed  Google Scholar 

  55. L. Ferrighia, L. Frediania, C. Cappelli, P. Sałekc, H. Agren, T. Helgakerd, K. Ruuda, Chem. Phys. Lett. (2006). https://doi.org/10.1016/j.cplett.2006.04.112

    Article  Google Scholar 

  56. A.D. Buckingham, Adv. Chem. Phys. (1967). https://doi.org/10.1002/9780470143582.ch2

    Article  Google Scholar 

  57. A.D. McLean, M. Yoshimine, J. Chem. Phys. (1967). https://doi.org/10.1063/1.1712220

    Article  Google Scholar 

  58. M.J. Frisch et al., Gaussian 09, Revision A02 (Gaussian, Inc., Pittsburgh, 2009)

    Google Scholar 

  59. Z. Biglari, Physica E (2020). https://doi.org/10.1016/j.physe.2019.113656

    Article  Google Scholar 

  60. R.G. Lawton, W.E. Barth, J. Am. Chem. Soc. (1971). https://doi.org/10.1021/ja00736a028

    Article  Google Scholar 

  61. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990)

    Google Scholar 

  62. T. Lu, F. Chen, J. Comput. Chem. (2012). https://doi.org/10.1002/jcc.22885

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Lorestan University [Grant Number 1398-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Biglari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolahi Joneghani, S., Biglari, Z. & Gholipour, A. Alkali Metal Doping for Enhancement of Nonlinear Optical Properties of Dicyclopenta[4,3,2,1-ghi:4′,3′,2′,1′-pqr]perylene: A New Bowl-Shaped Fragment of Fullerene C70. J Inorg Organomet Polym 31, 648–658 (2021). https://doi.org/10.1007/s10904-020-01715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01715-2

Keywords

Navigation