Skip to main content
Log in

Nonlinear Optical (NLO) Response of Si12C12 Nanocage Decorated with Alkali Metals (M = Li, Na and K): A Theoretical Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Electronic structure and nonlinear optical (NLO) response of Si12C12 nanocage decorated with alkali metals (M = Li, Na and K) are investigated by means of density functional theory (DFT) and second order Møller–Plesset (MP2) calculations with 6 − 31 + G(d) basis set. The results of present study indicate that interaction of alkali metals with Si12C12 nanocage narrow the HOMO–LUMO gap of nanocage remarkably. It is shown that, decoration of Si12C12 with alkali metals play significant role in enhancement of first hyperpolarizability (β0) and consequence NLO response of Si12C12 nanocage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Hou, Y.Y. Wu, J.Y. Liu, Theoretical studies on structures and nonlinear optical properties of alkali doped electrides B12N12–M (M = Li, Na, K). Int. J. Quantum. Chem. 116(17), 1296–1302 (2016)

    Article  CAS  Google Scholar 

  2. E. Shakerzadeh, Z. Biglari, E. Tahmasebi, M@B40 (M = Li, Na, K) serving as a potential promising novel NLO nanomaterial. Chem. Phys. Lett. 654, 76–80 (2016)

    Article  CAS  Google Scholar 

  3. M. Solimannejad, A theoretical study of nonlinear optical features of alumina nanostructures with the groups III and VI dopants. Phys. Chem. Res. 4(4), 627–641 (2016). doi:10.22036/pcr.2016.16429

    Google Scholar 

  4. S. Kamalinahad, M. Solimannejad, E. Shakerzadeh, Nonlinear optical (NLO) response of pristine and functionalized dodecadehydrotribenzo [18] annulene ([18]DBA): a theoretical study. Bull. Chem. Soc. Jpn. 89(6), 692–699 (2016)

    Article  CAS  Google Scholar 

  5. H.-L. Xu, Z.-R. Li, D. Wu, B.-Q. Wang, Y. Li, F.L. Gu, Y. Aoki, Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. J. Am. Chem. Soc. 129(10), 2967–2970 (2007)

    Article  CAS  Google Scholar 

  6. E. Shakerzadeh, N. Barazesh, S.Z. Talebi, A comparative theoretical study on the structural, electronic and nonlinear optical features of B12N12 and Al12N12 nanoclusters with the groups III, IV and V dopants. Superlattices Microstruct. 76, 264–276 (2014)

    Article  CAS  Google Scholar 

  7. E. Shakerzdeh, E. Tahmasebi, H.R. Shamlouei, The influence of alkali metals (Li, Na and K) interaction with Be12O12 and Mg12O12 nanoclusters on their structural, electronic and nonlinear optical properties: a theoretical study. Synth. Met. 204, 17–24 (2015)

    Article  CAS  Google Scholar 

  8. M. Niu, G. Yu, G. Yang, W. Chen, X. Zhao, X. Huang, Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg. Chem. 53(1), 349–358 (2013)

    Article  Google Scholar 

  9. P. Karamanis, R. Marchal, P. Carbonniére, C. Pouchan, Doping-enhanced hyperpolarizabilities of silicon clusters: a global ab initio and density functional theory study of Si10(Li, Na, K)n (n = 1, 2) clusters. J. Chem. Phys. 135(4), 044511 (2011)

    Article  Google Scholar 

  10. P. Karamanis, C. Pouchan, Fullerene–C60 in contact with alkali metal clusters: Prototype nano-objects of enhanced first hyperpolarizabilities. J. Phys. Chem. C 116(21), 11808–11819 (2012)

    Article  CAS  Google Scholar 

  11. E.D. Glendening, D. Feller, Cation-Water Interactions: the M+ (H2O)n Clusters for Alkali Metals, M = Li, Na, K, Rb, and Cs. J. Phys. Chem. 99(10), 3060–3067 (1995)

    Article  CAS  Google Scholar 

  12. H.-L. Xu, Z.-R. Li, D. Wu, F. Ma, Z.-J. Li, F.L. Gu, Lithiation and Li-doped effects of [5] cyclacene on the static first hyperpolarizability. J. Phys. Chem. C 113(12), 4984–4986 (2009)

    Article  CAS  Google Scholar 

  13. X.F. Duan, L.W. Burggraf, Theoretical investigation of stabilities and optical properties of Si12C12 clusters. J. Chem. Phys. 142(3), 034303 (2015)

    Article  Google Scholar 

  14. Y. Mo, M. Shajahan, Y. Lee, Y. Hahn, K. Nahm, Structural transformation of carbon nanotubes to silicon carbide nanorods or microcrystals by the reaction with different silicon sources in rf induced CVD reactor. Synth. Met. 140(2), 309–315 (2004)

    Article  CAS  Google Scholar 

  15. Z. Pan, H.-L. Lai, F.C. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, Oriented silicon carbide nanowires: synthesis and field emission properties. Adv. Mater. 12(16), 1186–1190 (2000)

    Article  CAS  Google Scholar 

  16. P. Pochet, L. Genovese, D. Caliste, I. Rousseau, S. Goedecker, T. Deutsch, First-principles prediction of stable SiC cage structures and their synthesis pathways. Phys. Rev. B 82(3), 035431 (2010)

    Article  Google Scholar 

  17. M.B. Javan, Optical properties of SiC nanocages: ab initio study. Appl Phys A 113(1), 105–113 (2013)

    Article  Google Scholar 

  18. J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008)

    Article  CAS  Google Scholar 

  19. A.E. Reed, R.B. Weinstock, F. Weinhold, Natural population analysis. J. Chem. Phys. 83(2), 735–746 (1985)

    Article  CAS  Google Scholar 

  20. L. Turi, J. Dannenberg, Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction. J. Phys. Chem. 97(11), 2488–2490 (1993)

    Article  CAS  Google Scholar 

  21. S.F. Boys, F.D. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4), 553–566 (1970)

    Article  CAS  Google Scholar 

  22. N.M. O’boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29(5), 839–845 (2008)

    Article  Google Scholar 

  23. M. Head-Gordon, J.A. Pople, M.J. Frisch, MP2 energy evaluation by direct methods. Chem. Phys. Lett. 153(6), 503–506 (1988)

    Article  CAS  Google Scholar 

  24. S. Sæbø, J. Almlöf, Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 154(1), 83–89 (1989)

    Article  Google Scholar 

  25. M.J. Frisch, M. Head-Gordon, J.A. Pople, Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 166(3), 281–289 (1990)

    Article  CAS  Google Scholar 

  26. E. Runge, E.K. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997 (1984)

    Article  CAS  Google Scholar 

  27. F. Furche, R. Ahlrichs, Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 117(16), 7433–7447 (2002)

    Article  CAS  Google Scholar 

  28. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 02. (Gaussian, Inc, Wallingford, CT, 2015)

    Google Scholar 

  29. J.-L. Oudar, D. Chemla, Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66(6), 2664–2668 (1977)

    Article  CAS  Google Scholar 

  30. J.D. Oudar, Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J. Chem. Phys. 67(2), 446–457 (1977)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Solimannejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solimannejad, M., Rahimi, R. & Kamalinahad, S. Nonlinear Optical (NLO) Response of Si12C12 Nanocage Decorated with Alkali Metals (M = Li, Na and K): A Theoretical Study. J Inorg Organomet Polym 27, 1234–1242 (2017). https://doi.org/10.1007/s10904-017-0570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0570-4

Keywords

Navigation