Skip to main content
Log in

Synthesis, Characterization, Thermal Properties and Temperature-Dependent AC Conductivity Studies of Poly (Butyl Methacrylate)/Neodymium Oxide Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Thermoplastic nanocomposites based on poly (butyl methacrylate) (PBMA) with various contents of neodymium oxide (Nd2O3) nanoparticles were synthesized through one-step free radical polymerization method. The structural, morphological and thermal properties of the nanocomposites were studied by Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV)–visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and thermogravimetry and differential scanning calorimetry (DSC). The effect of different volume fraction of Nd2O3 nanoparticles on temperature-dependent AC conductivity of polymer nanocomposites was also analysed. The FTIR and UV spectra confirmed the incorporation of Nd2O3 nanoparticles in PBMA chain through the shift in characteristic absorption bands of nanocomposite compared to pure PBMA. TEM images indicated that Nd2O3 nanoparticles were sheathed by PBMA chain. The SEM images revealed better compatibility between the PBMA and Nd2O3 nanoparticles. The thermal transition studied by DSC showed an enhanced glass transition temperature of PBMA by the inclusion of Nd2O3 nanoparticles. Similarly, the thermal degradation of the composite was elevated by the insertion of nanoparticles. The AC conductivity of nanocomposite was higher than pure PBMA and the electrical conductivity increased with the temperature and frequencies. The activation energy and exponential values of the composite revealed that the system follows small polaron hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Jayalakshmi, J. Jeyanthi, J. Inorg. Organomet. Polym. Mater. 28, 1286 (2018)

    Article  CAS  Google Scholar 

  2. F. Haghighat, M. Mokhtary, J. Inorg. Organomet. Polym. Mater. 27, 779 (2017)

    Article  CAS  Google Scholar 

  3. H.M. Abomostafa, G.M.E. Komy, J. Inorg. Organomet. Polym. Mater. 29, 908 (2019)

    Article  CAS  Google Scholar 

  4. K. Suhailath, M.T. Ramesan, J. Vinyl Addit. Technol. 25, 9 (2018)

    Article  Google Scholar 

  5. H. Martínez, L.D. Onofrio, G. Gonzalez, Hyperfine Interact. 224, 99 (2013)

    Article  Google Scholar 

  6. Z. Ghebache, F. Hamidouche, Z. Safidine, M. Trari, B. Bellal, J. Inorg. Organomet. Polym. Mater. 29, 1548 (2019)

    Article  CAS  Google Scholar 

  7. C.N.R. Rao, K. Pramoda, Bull. Chem. Sco. Jpn. 92, 441 (2019)

    Article  CAS  Google Scholar 

  8. R. Saito, D. Nakagawa, Polym. Adv. Technol. 20, 285 (2009)

    Article  CAS  Google Scholar 

  9. T.P. Nguyen, Surf. Coat. Tech. 206, 742 (2011)

    Article  CAS  Google Scholar 

  10. D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, Z. Guo, Polym. Rev. 59, 280 (2019)

    Article  CAS  Google Scholar 

  11. M.T. Ramesan, K. Nushhat, K. Parvathi, T. Anilkumar, J. Mater. Sci. 30, 13719 (2019)

    CAS  Google Scholar 

  12. M.B. Mohamed, M.H.A. Kader, J. Inorg. Organomet. Polym. Mater. 30, 2289 (2020)

    Article  CAS  Google Scholar 

  13. Q. Wang, L. Zhu, J. Polym. Sci. Part B 49, 1421 (2011)

    Article  CAS  Google Scholar 

  14. K. Suhailath, M.T. Ramesan, J. Mater. Sci. 28, 13797 (2016)

    Google Scholar 

  15. K. Suhailath, M.T. Ramesan, J. Therm. Anal. Calori. 135, 2159 (2019)

    Article  CAS  Google Scholar 

  16. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 38, 1232 (2013)

    Article  CAS  Google Scholar 

  17. P. Jayakrishnan, M.T. Ramesan, J. Inorg. Organomet. Polym. 27, 323 (2017)

    Article  CAS  Google Scholar 

  18. G. Kickelbick, Prog. Polym. Sci. 28, 83 (2003)

    Article  CAS  Google Scholar 

  19. P. Jayakrishnan, M.T. Ramesan, Polym. Compos. 39, 2791 (2018)

    Article  CAS  Google Scholar 

  20. L. Kepinski, M. Wołcyrz, M. Drozd, Mater. Chem. Phys. 96, 353 (2006)

    Article  CAS  Google Scholar 

  21. W. Yang, Y. Qi, Y. Ma, X. Li, X. Guo, J. Gao, M. Chen, Mater. Chem. Phys. 84, 52 (2004)

    Article  CAS  Google Scholar 

  22. M. Zawadzki, L. Kepinski, J. Alloys Compd. 380, 255 (2004)

    Article  CAS  Google Scholar 

  23. G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, Compos. Sci. Technol. 67, 1709 (2007)

    Article  CAS  Google Scholar 

  24. A. Nihmath, M.T. Ramesan, Polym. Adv. Technol. 29, 2165 (2018)

    Article  CAS  Google Scholar 

  25. N. Chand, N. Siddiqui, Compos. Interfaces. 19, 51 (2012)

    Article  CAS  Google Scholar 

  26. P. Latha, K. Prakash, S. Karuthapandian, Res. Chem. Intermed. 39, 5223 (2013)

    Google Scholar 

  27. R. Yuvakkumar, S.I. Hong, J. Sol-Gel Sci. Technol. 73, 511 (2015)

    Article  CAS  Google Scholar 

  28. J. Wang, Y. Zheng, Y. Kang, A. Wang, Chem. Eng. J. 223, 632 (2013)

    Article  CAS  Google Scholar 

  29. M.K. Poddar, S. Sharma, V.S. Moholkar, Polymer 99, 453 (2016)

    Article  CAS  Google Scholar 

  30. J. Trivedi, T. Bhatt, H. Trivedi, Cellulose. Chem. Technol. 48, 503 (2014)

    CAS  Google Scholar 

  31. R.Y. Hong, J.Z. Qian, J.X. Cao, Powder Technol. 163, 160 (2006)

    Article  CAS  Google Scholar 

  32. X. Tong, T. Tang, Q. Zhang, Z. Feng, B. Huang, J. Appl. Polym. Sci. 83, 446 (2002)

    Article  CAS  Google Scholar 

  33. M.T. Ramesan, P. Jayakrishnan, J. Inorg. Organomet. Polym. 27, 143 (2017)

    Article  CAS  Google Scholar 

  34. R.D. Gould, T.S. Shafai, Thin Solid Films 373, 89 (2000)

    Article  CAS  Google Scholar 

  35. S. Rajendran, O. Mahendran, K. Krishnaveni, J. New Mat. Electrochem. Systems. 6, 25 (2003)

    CAS  Google Scholar 

  36. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  CAS  Google Scholar 

  37. P. Mannu, M. Palanisamy, G. Bangaru, S. Ramakrishnan, A. Kandasami, P. Kumar, Appl. Phys. A. 125, 458 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. T. Ramesan greatly acknowledge the financial assistance from KSCSTE, Government of Kerala, India (Order No. 566/2017/KSCSTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhailath, K., Bahuleyan, B.K. & Ramesan, M.T. Synthesis, Characterization, Thermal Properties and Temperature-Dependent AC Conductivity Studies of Poly (Butyl Methacrylate)/Neodymium Oxide Nanocomposites. J Inorg Organomet Polym 31, 365–374 (2021). https://doi.org/10.1007/s10904-020-01665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01665-9

Keywords

Navigation