Skip to main content
Log in

Rapid Removal of 152+154Eu(III) Using Polyaniline/Ceria Nanocomposite from Low Level Waste

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, the adsorption of 152Eu and 154Eu, the two dominant europium activation products in the aqueous solution was investigated by using polyaniline/CeO2 nanocomposite. The nanocomposite was prepared in two steps- CeO2 by gel combustion method followed by in situ polymerization by using aniline monomer. The nanocomposite was found to have surface area 15.04 m2 g−1 and average particle size of 37.9 nm determined from BET and XRD data respectively. The adsorption study was carried out by batch measurements using radiotracer technique. The gamma spectrum energy of 152+154Eu was directly measured using Compact 1 K channel MCA Model-GSpec-USB, NaI(Tl) detector based spectroscopy. The nanocomposite was found to be efficient for rapid removal of 94.5% Eu(III) in 0.1 g L−1 of simulated sample solution. Contact time of 10 min, 10 mg of adsorbent dose, and neutral pH are optimum parameters. Adsorption and kinetic data were well described by Langmuir and Pseudo-second-order model respectively. Negative value of ΔG0 was supported the spontaneous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Lahiri, K. Roy, S. Bhattacharya, S. Maji, S. Basu, Appl. Radiat. Isot. 63(3), 293–297 (2005)

    Article  CAS  Google Scholar 

  2. Y.G. Chen, Z. Sun, W.M. Ye, J. Radioanal. Nucl. Chem. 311, 1839 (2017)

    Article  CAS  Google Scholar 

  3. H.S. Hassan, S.H. Kenawy, G.T. El-Bassyouni, E.M. Hamzawy, R.S. Hassan, Hassan Part. Sci. Technol. (2018). https://doi.org/10.1080/02726351.2018.1508101

    Article  Google Scholar 

  4. P. Pathak, G. Choppin, J. Radioanal. Nucl. Chem. 2, 270–277 (2006)

    Google Scholar 

  5. J.C. Evans, E.L. Lepel, R.W. Sanders, C.L. Wilkerson, W. Silker, C.W. Thomas, K.H. Abel, D.R. Robertson, NUREG/CR-3474 (1984)

  6. S.S. Metwally, H.S. Hassan, N.M. Samy, J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.110941

    Article  Google Scholar 

  7. M.S. Mansy, R.S. Hassan, Y.T. Selim, S.H. Kenawy, Appl. Radiat. Isot. 130, 198–205 (2017)

    Article  CAS  Google Scholar 

  8. R.R. Ayoub, Sep. Sci. Technol. 51(2), 229–236 (2016)

    Article  CAS  Google Scholar 

  9. B. El-Gammal, S.S. Metwally, H.F. Aly, S.A. Abo-El-Enein, Desalin. Water Treat. 46, 124–138 (2012)

    Article  CAS  Google Scholar 

  10. X.L. Tan, D. Xu, C.L. Chen, X.K. Wang, W.P. Hu, Radiochim. Acta 96, 23–29 (2008). https://doi.org/10.1524/ract.2008.1457

    Article  CAS  Google Scholar 

  11. L. Fuks, L. Maskalchuk, I. Herdzik-Koniecko, T. Leontieva, J. Radioanal. Nucl. Chem. (2019). https://doi.org/10.1007/s10967-019-06449-1

    Article  Google Scholar 

  12. M. Wdowin, W. Franus, IntechOpen (2016). https://doi.org/10.5772/64362

    Article  Google Scholar 

  13. S.M. Husnain, W. Um, W. Lee, Y.S. Chang, RSC Adv. 8, 2521–2540 (2018)

    Article  CAS  Google Scholar 

  14. Hassan HS, Imam DM, Kenawy SH, El-Bassyouni GT, Hamzawy EM (2019) J. Radioanal. Nucl. Chem. DOI: 10.1007/s10967-019-06599-2. https://doi.org/10.1007/s10967-019-06599-2

    Article  Google Scholar 

  15. M. Sadeghi, S. Yekta, H. Ghaedi, E. Babanezhad, Int. J. Ind. Chem. 7, 315 (2016)

    Article  CAS  Google Scholar 

  16. S. Lowell, J.E. Shields, Powder surface area and porosity, 2nd edn. (Chapman & Hall, New York, 1984)

    Book  Google Scholar 

  17. R. Srinivasan, Adv. Mater. Sci. Eng. (2011). https://doi.org/10.1155/2011/872531

    Article  Google Scholar 

  18. L. Guerrin, R.A. Alvarez-Puebla, N. Pazos-Perez, Materials 11(7), 1154 (2018). https://doi.org/10.3390/ma11071154

    Article  CAS  Google Scholar 

  19. L.H. Yahia, N. Chirani, L. Gritsch, F.L. Motta, S. Chirani, S. Fare, J. Biomed. Sci. 4(2), 13 (2015). https://doi.org/10.4172/2254-609X.100013

    Article  Google Scholar 

  20. M.R. Berber, J. Chem. (2020). https://doi.org/10.1155/2020/7608423

    Article  Google Scholar 

  21. M.R. Abukhadra, M. Rabia, M. Shaban, F. Verpoort, Adv. Powder Technol. 29(10), 2501–2511 (2018). https://doi.org/10.1016/j.apt.2018.06.030

    Article  CAS  Google Scholar 

  22. G. Mohammadnezhad, A.K. Behbahan, J. Iran. Chem. Soc. 17, 1259–1281 (2020)

    Article  CAS  Google Scholar 

  23. P. Baruah, D. Mahanta, Bull. Mater. Sci. 39, 875–882 (2016)

    Article  CAS  Google Scholar 

  24. R.R. Karri, M. Tanzifi, M.T. Yaraki, J.N. Sahu, Sahu optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J. Environ. Manage. 223, 517–529 (2018)

    Article  CAS  Google Scholar 

  25. R.K. Agrawalla, V. Meriga, R. Paul, A.K. Chakraborty, A.K. Mitra, Express Polym. Lett. 10, 780–787 (2016)

    Article  CAS  Google Scholar 

  26. M. Zirpe, H. Bagla, J. Thakur, Sep. Sci. Technol. (2019). https://doi.org/10.1080/01496395.2019.1660674

    Article  Google Scholar 

  27. D. Ouis, F.Z. Zeggai, A. Belmokhtar et al., J. Inorg. Organomet. Polym (2020). https://doi.org/10.1007/s10904-020-01508-7

    Article  Google Scholar 

  28. S. Agarwal, I. Tyagi, V.K. Gupta, F. Golbaz, A.N. Golikand, O. Moradi, J. Mol. Liq. 218, 494–498 (2016). https://doi.org/10.1016/j.molliq.2016.02.040

    Article  CAS  Google Scholar 

  29. A. Belalia, A. Zehhaf, A. Benyoucef, Polym. Sci. Ser. B 60, 816–824 (2018). https://doi.org/10.1134/S1560090418060039

    Article  CAS  Google Scholar 

  30. W. Stumm, Chemistry of the solid-water interface (Wiley/Interscience, New York, 1992)

    Google Scholar 

  31. P. Gunderi, A. Lamani, V. Prasad, H.S. Jayanna, J. Compos. Mater. 49(21), 1–9 (2014)

    Google Scholar 

  32. E. Kumar, P. Selvarajan, D. Muthuraj, J. Mater. Sci. 47, 7148–7156 (2012). https://doi.org/10.1007/s10853-012-6655-0

    Article  CAS  Google Scholar 

  33. J. Stejskal, R.G. Gilbert, Pure Appl. Chem. 74, 857 (2002)

    Article  CAS  Google Scholar 

  34. M. Mobin, J. Aslam, R. Alam, Arab. J. Sci. Eng. 42(1), 209–224 (2016). https://doi.org/10.1007/s13369-016-2234-z

    Article  CAS  Google Scholar 

  35. S. Singh, K. Barick, D. Bahadur, Int. J. Nanosci. 10(4–5), 1001–1005 (2011)

    Article  CAS  Google Scholar 

  36. L. Wang, J. Li, Q. Jiang, L. Zhao, Dalton Trans. 41(15), 4544–4551 (2012)

    Article  CAS  Google Scholar 

  37. T.A. Khan, A.A. Mukhlif, E.A. Khan, D.K. Sharma, Model. Earth Syst. Environ. 2, 117 (2016)

    Article  Google Scholar 

  38. N. Ayawei, A.N. Ebelegi, D. Wankasi, J. Chem. 2017, 1–11 (2017). https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  39. H.M. Freundlich, J. Phys. Chem. 57, 385–470 (1906)

    CAS  Google Scholar 

  40. M.M. Dubinin, L.V. Radushkevich, Proc. Acad. Sci. Phys. Chem. Sect. 55, 331–333 (1947)

    Google Scholar 

  41. M.I. Temkin, V. Pyzhev, Acta Physicochim. URSS 12, 217–222 (1940)

    Google Scholar 

  42. C. Gok, Int. J. Chem. Eng. Appl. 8(334), 339 (2019)

    Google Scholar 

  43. C. Chang, Y.H. Huang, H.T. Chen, Sep. Sci. Technol. 45, 370–379 (2010). https://doi.org/10.1080/01496390903484826

    Article  CAS  Google Scholar 

  44.  P. Saha, S. Chaudhari,  in Themodynamic, ed. By M. Tadashi (INTECH Open Access Publisher UK), p 349–364 (2011)

  45. V.K. Gupta, Ind. Eng. Chem. Res. 37, 192–202 (1998)

    Article  CAS  Google Scholar 

  46. A. Negrea, A. Gabor, C.M. Davidescu, M. Ciopec, P. Negrea, N. Duteanu, A. Barbulescu, Sci. Rep. (2018). https://doi.org/10.1038/s41598-017-18623-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. M.M. Hamed, M. Holiel, I.M. Radiochim, Radiochim. Acta. 104(12), 873–890 (2016)

    Article  CAS  Google Scholar 

  48. B. Arunraj, S. Talasila, V. Rajesh, N. Rajesh, Sep. Sci. Technol. (2018). https://doi.org/10.1080/01496395.2018.1556303

    Article  Google Scholar 

  49. H.M.H. Gad, N.S. Awwad, Sep. Sci. Technol. 42(16), 3657–3680 (2007)

    Article  CAS  Google Scholar 

  50. F. Granados-Correa, J. Vilchis-Granados, M. Jiménez-Reyes, L.A. Quiroz-Granados, J. Chem. (2012). https://doi.org/10.1155/2013/751696

    Article  Google Scholar 

  51. H.S. Hassan, W.E. Madcour, E.K. Elmaghraby, Mater. Chem. Phys. 234, 55–56 (2019)

    Article  CAS  Google Scholar 

  52. B. Xu, Y. Zhu, H. Liu, T. Chen, J. Mol. Liq. 221, 171–178 (2016). https://doi.org/10.1016/j.molliq.2016.05.055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge SAIF, IIT Mumbai for providing facility of EDS analysis and National Centre for Nanosciences & Nanotechnology, University of Mumbai, for XRD analysis and SEM analysis for this research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Thakur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zirpe, M., Bagla, H. & Thakur, J. Rapid Removal of 152+154Eu(III) Using Polyaniline/Ceria Nanocomposite from Low Level Waste. J Inorg Organomet Polym 30, 5053–5062 (2020). https://doi.org/10.1007/s10904-020-01606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01606-6

Keywords

Navigation