Skip to main content
Log in

Adsorption and reduction: combined effect of polyaniline emeraldine salt for removal of Cr(VI) from aqueous medium

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we have reported the removal of Cr(VI) ions by polyaniline (PANI) particles from aqueous medium. PANI in its emeraldine salt (ES) form can interact with Cr(VI), which is present as \(\text {HCrO}_{\text {4}}^{\boldsymbol {-}} \) in two ways. The adsorption of \(\text {HCrO}_{\text {4}}^{\boldsymbol {-}} \) ions due to the electrostatic interaction between partially positively charged PANI backbone and Cr(VI) anions causes the major portion of Cr(VI) removal and a small portion of Cr(VI) is reduced to Cr(III) by PANI (ES). The adsorption follows Langmuir adsorption isotherm and second-order kinetic model. It is observed that the removal of Cr(VI) is negligibly effected by the presence of other anions in the aqueous medium. The adsorption capacity of PANI (ES) is found to be 123 mg g−1, which is very high compared to activated carbon-based materials. The adsorbed anions can be desorbed by converting PANI emeraldine salt (ES) to PANI emeraldine base (EB). The EB form of PANI can be converted into ES form by treating with acid, which can be reused as adsorbent. It is important to note that the PANI (ES) is oxidized by \(\text {HCrO}_{\text {4}}^{\boldsymbol {-}} \) ions which decrease the hydrophilicity of the surface of PANI particles. This causes the decrease in adsorption capacity of recycled PANI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Scheme 2

Similar content being viewed by others

References

  1. Bhatnagar A and Jain A K 2005 J. Coll. Int. Sci. 281 49

    Article  Google Scholar 

  2. Zong F, Shanzhao Z and Binjiang G 2008 Environ. Sci. Technol. 42 6949

    Article  Google Scholar 

  3. Blanchard G, Maunaye M, Martin G, Blanchard G, Maunaye M and Martin G 1984 Wat. Res. 18 1501

    Article  Google Scholar 

  4. Legrini O, Oliveros O and Braun A M 1993 Chem. Rev. 93 671

    Article  Google Scholar 

  5. Katsumata H, Kaneko S, Inomata K, Itoh K, Funasaka K, Masuyama K et al 2003, J. Env. Manage. 69 187

    Article  Google Scholar 

  6. Zhang X, van den Bos C, Sloof W G, Hovestad A, Terryn H and de Wit J H W 2005 Surf. Coat. Tech. 199 92

    Article  Google Scholar 

  7. Oliveria D Q L, Goncalves M, Oliveria L C A and Guilherme L R C 2008 J. Hazard. Mater. 151 280

    Article  Google Scholar 

  8. Pizzi A 1980 J. Appl. Polym. Sci. 25 2547

    Article  Google Scholar 

  9. Costa M 1997 Crit. Rev. Toxicol. 27 431

    Article  Google Scholar 

  10. Singh J, Carlisle D L, Pritchard D E and Patierno S R 1998 Oncol. Res. 5 1307

    Google Scholar 

  11. Sugden K D and Stearns D M 2000 J. Environ. Pathol. Tox. 19 215

    Google Scholar 

  12. Shi X and Ding M 2002 Mol. Cell Biochem. 234/235 293

    Article  Google Scholar 

  13. Selvi K, Pattabhi S and Kadirvelu K 2001 Bioresour. Technol. 80 87

    Article  Google Scholar 

  14. Mor S, Ravindra K and Bishnoi N R 2007 Bioresour. Technol. 98 954

    Article  Google Scholar 

  15. Bhattacharyya K G and Sen Gupta S 2006 Ind. Eng. Chem. Res. 45 7232

    Article  Google Scholar 

  16. Lytle C M, Lytle F, Yang N, Qian J H, Hansen D, Zayed A and Terry N 1998 Environ. Sci. Technol. 32 3087

    Article  Google Scholar 

  17. Yoon J, Amy G, Chung J, Sohn J and Yoon Y 2009 Chemosphere 27 228

    Article  Google Scholar 

  18. Lashmipathiraj P, Bhaskar Raju G, Raviatul Basariya M, Parvathy S and Prabhakar S 2008 Separ. Purif. Technol. 60 96

    Article  Google Scholar 

  19. Demirbas A 2008 J. Hazard. Mater. 157 220

    Article  Google Scholar 

  20. McCullough R D and Williams S P 1993 J. Am. Chem. Soc. 115 11608

    Article  Google Scholar 

  21. Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425

    Article  Google Scholar 

  22. Gustafsson G, Cao Y, Treacy G M, Klavetter F and Heeger A J 1992 Nature 357 477

    Article  Google Scholar 

  23. Wynne K J and Street G B 1982 Ind. Eng. Chem. Prod. Res. Dev. 21 23

    Article  Google Scholar 

  24. Garnier F, Hajlaoui R, Yassar A and Srivastava P 1994 Science 265 1684

    Article  Google Scholar 

  25. MacDiarmid A G, Chiang J C and Richter A F 1987 Synthetic Met. 18 285

    Article  Google Scholar 

  26. MacDiarmid A G, Chiang J C, Halpern M, Huang W S, Mu S L, Somasiri N L D et al 1985, Mol. Cryst. Liq. Cryst. 121 173

    Article  Google Scholar 

  27. Huang J, Virji S, Weiller B H and Kaner R B 2003 J. Am. Chem. Soc. 125 314

    Article  Google Scholar 

  28. Virji S, Huang J, Kaner R B and Weiller B H 2004 Nano Lett. 4 491

    Article  Google Scholar 

  29. Pharhad Hussain A M and Kumar A 2003 Bull. Mater. Sci. 26 (3) 329

    Article  Google Scholar 

  30. Baker C O, Shedd B, Innis P C, Whitten P G, Spinks G M, Wallace G G and Kaner R B 2008 Adv. Mater. 20 155

    Article  Google Scholar 

  31. Dhawan S K and Trivedi D C 1989 Bull. Mater. Sci. 12 153

    Article  Google Scholar 

  32. Zheng Y, Liu Y and Wang A 2012 Ind. Eng. Chem. Res. 51 10079

    Article  Google Scholar 

  33. Mahanta D, Madras G, Radhakrishnan S and Patil S 2008 J. Phys. Chem. B 112 10153

    Article  Google Scholar 

  34. Mahanta D, Madras G, Radhakrishnan S and Patil S 2009 J. Phys. Chem. B 113 2293

    Article  Google Scholar 

  35. Ayad M M and El-Nasr A A 2010 J. Phys. Chem. C 114 14377

    Article  Google Scholar 

  36. Guo X, Fei G T, Su H and Zhang L D 2011 J Phys. Chem. C 115 1608

    Article  Google Scholar 

  37. Liu X, Qian X, Shen J, Zhou W and An X 2012 Bioresour. Technol. 124 516

    Article  Google Scholar 

  38. Zhang R, Ma H and Wang B 2010 Ind. Eng. Chem. Res. 49 9998

    Article  Google Scholar 

  39. Albuquerque J E, Mattoso L H C, Faria R M, Masters J G and MacDiarmid A G 2004 Synth. Met. 146 1

    Article  Google Scholar 

  40. Geng Y, Li J, Jing X and Wang F 1997 Synth. Met. 84 97

    Article  Google Scholar 

  41. Dutt S and Siril P F 2004 Mater. Lett. 124 50

    Article  Google Scholar 

  42. Albuquerque J E, Mattoso L H C, Balogh D T, Faria R M, Masters J G and MacDiarmid A G 2000 Synth. Met. 113 19

    Article  Google Scholar 

  43. Zhang Z, Wei Z and Wan M 2002 Macromolecules 35 5937

    Article  Google Scholar 

  44. Pouget J P, Jozefowicz M E, Epstein A J, Tang X and MacDiarmid A G 1991 Macromolecules 24 779

    Article  Google Scholar 

  45. Selvi K, Pattabhi S and Kadirvelu K 2001 Bioresour. Technol. 80 87

    Article  Google Scholar 

  46. Dakiky M, Khamis M, Manassra A and Mer’eb M 2002 Adv. Environ. Res. 6 533

    Article  Google Scholar 

  47. Muthukumaran K and Beulah S 2011 Procedia. Environ. Sci. 4 281

    Article  Google Scholar 

  48. Karthikeyan T, Rajgopal S and Miranda L R 2005 J. Hazard. Mater. B124 192

    Article  Google Scholar 

  49. Babel S and Kurniawan T A 2004 Chemosphere 54 951

    Article  Google Scholar 

  50. Bailey S E, Olin T J, Bricka R M and Adrin D D 1999 Wat. Res. 33 2469

    Article  Google Scholar 

Download references

Acknowledgement

We thank the University Grant Commission (UGC), India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DEBAJYOTI MAHANTA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BARUAH, P., MAHANTA, D. Adsorption and reduction: combined effect of polyaniline emeraldine salt for removal of Cr(VI) from aqueous medium. Bull Mater Sci 39, 875–882 (2016). https://doi.org/10.1007/s12034-016-1204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1204-0

Keywords

Navigation