Skip to main content
Log in

Photocatalytic Activity, Microstructures and Luminescent Study of Ti-ZS:M Nano-composites Materials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Our main interest in this work is in the synthesis and improvement of the physical properties of TiO2-based nanocomposites modified by coupling to Zn2SiO4:Mn (ZS:M) nanoparticles. The micro-structural characterizations carried out by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques of various TiO2-ZS:M (Ti-ZS:M) samples at different temperatures revealed the formation of the anatase phase. The optical properties of TiO2 modified by ZS:M nanoparticles shows a shift in absorption band toward UV region reflecting a significant an increase in the energy band gap for anatase phase at 3.36 eV, which is larger than the 3.06 eV found for the Dugussa P25 TiO2. In this work, the influence of the annealing temperature on the microstructural, physico-chemical characteristics of the different samples is presented and their correlation with their photoluminescence in the visible spectral region has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Guo, Y. Liang, S. Lan, L. Liu, J. Zhang, G. Ji, S. Gan, Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation. J. Phys. Chem. C 118, 18343–18355 (2014)

    CAS  Google Scholar 

  2. H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C 15, 1–20 (2013)

    CAS  Google Scholar 

  3. W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A.A. Elzatahry, Y. Xia, D. Zhao, Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J. Am. Chem. Soc. 135, 18300–18303 (2013)

    CAS  PubMed  Google Scholar 

  4. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13, 169–189 (2012)

    CAS  Google Scholar 

  5. V. Etacheri, J.E. Yourey, B.M. Bartlett, Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 8, 1491–1499 (2014)

    CAS  PubMed  Google Scholar 

  6. K. Hu, E. Lei, Y. Li, X. Zhao, D. Zhao, W. Zhao, H. Rong, Photocatalytic degradation mechanism of the visible-light responsive BiVO4/TiO2 core-shell heterojunction photocatalyst. J. Inorg. Organometall. Polym. Mater. 30, 775–788 (2019)

    Google Scholar 

  7. H. Qi, H. Liu, L. Zhang, J. Wu, Photodegradation of methyl orange over CdS–TiO2/L-zeolite composite photocatalyst. J. Inorg. Organomet. Polym. Mater. 29, 564–571 (2018)

    Google Scholar 

  8. B. Zhang, S. Cao, M. Du, X. Ye, Y. Wang, J. Ye, Titanium dioxide (TiO2) mesocrystals: synthesis growth mechanisms and photocatalytic properties. Catalysts 9, 91 (2019)

    Google Scholar 

  9. G. Liao, S. Chen, X. Quan, H. Chen, Y. Zhang, Photonic crystal coupled TiO(2)/polymer hybrid for efficient photocatalysis under visible light irradiation. Environ. Sci. Technol. 44, 3481–3485 (2010)

    CAS  PubMed  Google Scholar 

  10. H. Xiao, J. Li, B. He, Anatase-titania templated by nanofibrillated cellulose and photocatalytic degradation for methyl orange. J. Inorg. Organomet. Polym Mater. 27, 1022–1027 (2017)

    CAS  Google Scholar 

  11. D. Wang, J. Zhang, Q. Luo, X. Li, Y. Duan, J. An, Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light. J. Hazard. Mater. 169, 546–550 (2009)

    CAS  PubMed  Google Scholar 

  12. D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’ method. Catal. Commun. 9, 1162–1166 (2008)

    CAS  Google Scholar 

  13. X. Jiang, X. Yang, Y. Zhu, H. Jiang, Y. Yao, P. Zhao, C. Li, 3D nitrogen-doped graphene foams embedded with ultrafine TiO2 nanoparticles for high-performance lithium-ion batteries. J. Mater. Chem. A 2, 11124 (2014)

    CAS  Google Scholar 

  14. D. Vernardou, E. Stratakis, G. Kenanakis, H.M. Yates, S. Couris, M.E. Pemble, E. Koudoumas, N. Katsarakis, One pot direct hydrothermal growth of photoactive TiO2 films on glass. J. Photochem. Photobiol. A 202, 81–85 (2009)

    CAS  Google Scholar 

  15. M. Rana, S. Mondal, L. Sahoo, K. Chatterjee, P.E. Karthik, U.K. Gautam, Emerging materials in heterogeneous electrocatalysis involving oxygen for energy harvesting. ACS Appl. Mater. Interfaces 10, 33737–33767 (2018)

    CAS  PubMed  Google Scholar 

  16. C.V. de Oliveira, A. Alhussein, J. Creus, F. Schuster, M.L. Schlegel, Z. Dong, C. Jiménez, Bifunctional TiO2/AlZr thin films on steel substrate combining corrosion resistance and photocatalytic properties. Coatings 9, 564 (2019)

    Google Scholar 

  17. P. Aghasiloo, M. Yousefzadeh, M. Latifi, R. Jose, Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J. Alloy. Compd. 790, 257–265 (2019)

    CAS  Google Scholar 

  18. S. Ramanavicius, A. Tereshchenko, R. Karpicz, V. Ratautaite, U. Bubniene, A. Maneikis, A. Jagminas, A. Ramanavicius, TiO2-x/TiO2-structure based 'self-heated' sensor for the determination of some reducing gases. Sensors (Basel) 20, 74 (2019)

    Google Scholar 

  19. X. Li, F. Zheng, Y. Luo, Y. Wu, F. Lu, Preparation and electrochemical performance of TiO2-SnO2 doped RuO2 composite electrode for supercapacitors. Electrochim. Acta 237, 177–184 (2017)

    CAS  Google Scholar 

  20. P. Yilmaz, A.M. Lacerda, I. Larrosa, S. Dunn, Photoelectrocatalysis of Rhodamine B and solar hydrogen production by TiO 2 and Pd/TiO 2 catalyst systems. Electrochim. Acta 231, 641–649 (2017)

    CAS  Google Scholar 

  21. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  PubMed  Google Scholar 

  22. G. Liao, S. Chen, X. Quan, Y. Zhang, H. Zhao, Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl. Catal. B 102, 126–131 (2011)

    CAS  Google Scholar 

  23. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012)

    CAS  Google Scholar 

  24. S. Sambaza, A. Maity, K. Pillay, Enhanced degradation of BPA in water by PANI supported Ag/TiO2 nanocomposite under UV and visible light. J. Environ. Chem. Eng. 7, 102880 (2019)

    CAS  Google Scholar 

  25. S. Feng, F. Liu, X. Fu, X. Peng, J. Zhu, Q. Zeng, J. Song, Photocatalytic performances and durability of TiO2/cement composites prepared by a smear method for organic wastewater degradation. Ceram. Int. 45, 23061–23069 (2019)

    CAS  Google Scholar 

  26. M.R. Nabid, R. Sedghi, S. Gholami, H.A. Oskooie, M.M. Heravi, Preparation of new magnetic nanocatalysts based on TiO2 and ZnO and their application in improved photocatalytic degradation of dye pollutant under visible light. Photochem. Photobiol. 89, 24–32 (2013)

    CAS  PubMed  Google Scholar 

  27. Y. Song, J. Zhang, L. Yang, S. Cao, H. Yang, J. Zhang, L. Jiang, Y. Dan, P. Le Rendu, T.P. Nguyen, Photocatalytic activity of TiO2 based composite films by porous conjugated polymer coating of nanoparticles. Mater. Sci. Semicond. Process. 42, 54–57 (2016)

    CAS  Google Scholar 

  28. Y. Zhao, C. Li, X. Liu, F. Gu, H.L. Du, L. Shi, Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygen diffusion flame. Appl. Catal. B 79, 208–215 (2008)

    CAS  Google Scholar 

  29. J. Zhang, L. Feng, J. Wei, X. Guo, W. Cao, Synthesis of SnO2/TiO2 nanocomposite photocatalysts by supercritical fluid combination technology. Chin. Sci. Bull. 51, 2050–2054 (2006)

    CAS  Google Scholar 

  30. C. Strohhöfer, J. Fick, H.C. Vasconcelos, R.M. Almeida, Active optical properties of Er-containing crystallites in sol–gel derived glass films. J. Non-Cryst. Solids 226, 182–191 (1998)

    Google Scholar 

  31. H. He, H. Wang, D. Sun, M. Shao, X. Huang, Y. Tang, N-doped rutile TiO 2 /C with significantly enhanced Na storage capacity for Na-ion batteries. Electrochim. Acta 236, 43–52 (2017)

    CAS  Google Scholar 

  32. Z. Wang, J. Sha, E. Liu, C. He, C. Shi, J. Li, N. Zhao, A large ultrathin anatase TiO2 nanosheet/reduced graphene oxide composite with enhanced lithium storage capability. J. Mater. Chem. A 2, 8893 (2014)

    CAS  Google Scholar 

  33. K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym Mater. 29, 203–212 (2019)

    CAS  Google Scholar 

  34. K. Omri, R. Lahouli, Tunable dielectric and microstructure properties Zn2SiO4–Mn glass–ceramics for multifunctional applications. J. Mater. Sci. Mater. Electron. 30, 7834–7839 (2019)

    CAS  Google Scholar 

  35. M. Madani, K. Omri, N. Fattah, A. Ghorbal, X. Portier, Influence of silica ratio on structural and optical properties of SiO2/TiO2 nanocomposites prepared by simple solid-phase reaction. J. Mater. Sci. Mater. Electron. 28, 12977–12983 (2017)

    CAS  Google Scholar 

  36. Y. Li, L. Huang, J. Xu, H. Xu, Y. Xu, J. Xia, H. Li, Visible-light-induced blue MoO3–C3N4 composite with enhanced photocatalytic activity. Mater. Res. Bull. 70, 500–505 (2015)

    CAS  Google Scholar 

  37. Y. Ma, Y. Jia, Z. Jiao, L. Wang, M. Yang, Y. Bi, Y. Qi, Facile synthesize α-MoO3 nanobelts with high adsorption property. Mater. Lett. 157, 53–56 (2015)

    CAS  Google Scholar 

  38. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    CAS  Google Scholar 

  39. M. Chen, B. Cullity, Elements of X-ray diffractions (Addison-Wesley, Reading, 1978)

    Google Scholar 

  40. R. Suresh, V. Ponnuswamy, R. Mariappan, N. Senthil Kumar, Influence of substrate temperature on the properties of CeO2 thin films by simple nebulizer spray pyrolysis technique. Ceram. Int. 40, 437–445 (2014)

    CAS  Google Scholar 

  41. L.S. Dubrovinsky, N.A. Dubrovinskaia, V. Swamy, J. Muscat, N.M. Harrison, R. Ahuja, B. Holm, B. Johansson, Materials science. The hardest known oxide. Nature 410, 653–654 (2001)

    CAS  PubMed  Google Scholar 

  42. T. Homann, T. Bredow, K. Jug, Adsorption of small molecules on the anatase(100) surface. Surf. Sci. 555, 135–144 (2004)

    CAS  Google Scholar 

  43. S. El-Sherbiny, F. Morsy, M. Samir, O.A. Fouad, Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment. Appl. Nanosci. 4, 305–313 (2013)

    Google Scholar 

  44. D. Veer, R.M. Singh, H. Kumar, Structural and optical characterization of ZnO-TiO2-SiO2 nanocomposites synthesized by sol-gel technique. Asian J. Chem. 29, 2391–2395 (2017)

    CAS  Google Scholar 

  45. V. Džimbeg-Malčić, Ž. Barbarić-Mikočević, K. Itrić, Kubelka-Munk theory in describing optical properties of paper (I). Tehnički vjesnik 18, 117–124 (2011)

    Google Scholar 

  46. G.H. Meeten, P. Wood, Optical fibre methods for measuring the diffuse reflectance of fluids. Meas. Sci. Technol. 4, 643–648 (1993)

    Google Scholar 

  47. T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 212, 325–335 (2018)

    CAS  Google Scholar 

  48. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003)

    CAS  Google Scholar 

  49. K. Omri, J. El Ghoul, A. Alyamani, C. Barthou, L. El Mir, Luminescence properties of green emission of SiO2/Zn2SiO4: Mn nanocomposite prepared by sol–gel method. Physica E 53, 48–54 (2013)

    CAS  Google Scholar 

  50. D. Vernardou, K. Vlachou, E. Spanakis, E. Stratakis, N. Katsarakis, E. Kymakis, E. Koudoumas, Influence of solution chemistry on the properties of hydrothermally grown TiO2 for advanced applications. Catal. Today 144, 172–176 (2009)

    CAS  Google Scholar 

  51. J. Xu, X. Sun, Y. Shan, J. Xu, G. Wang, L. Wang, Enhanced UV-light driven photocatalytic performances and recycling properties of TiO2/AlON composite photocatalyst. Ceram. Int. 45, 6767–6773 (2019)

    CAS  Google Scholar 

  52. I. Uysal, F. Severcan, Z. Evis, Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride. Ceram. Int. 39, 7727–7733 (2013)

    CAS  Google Scholar 

  53. S.N. Hoseini, A.K. Pirzaman, M.A. Aroon, A.E. Pirbazari, Photocatalytic degradation of 2,4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes. J. Water Process Eng. 17, 124–134 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Alonizan or K. Omri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonizan, N., Chouiref, L., Omri, K. et al. Photocatalytic Activity, Microstructures and Luminescent Study of Ti-ZS:M Nano-composites Materials. J Inorg Organomet Polym 30, 4372–4381 (2020). https://doi.org/10.1007/s10904-020-01598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01598-3

Keywords

Navigation