Skip to main content
Log in

Enhanced photocatalytic performance and impact of annealing temperature on TiO2/Gd2O3:Fe composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work relates to an experimental study concerning the elaboration of the composite material TiO2/Gd2O3:Fe (TiO–Gd:Fe) from powders of Gd2O3 and TiO2 via a ball milling process with different annealing temperatures. The micro-structural and morphological characterizations of the ground Gd2O3−TiO2 mixture as well as the measurements of the optical properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and UV–Vis diffuse reflectance spectroscopy. The X-ray results of the TiO–Gd:Fe composites reveal the presence of the TiO2 anatase phase in addition to the Gd2O3 phase. The direct band-gap of TiO–Gd:Fe sample is 3.22 eV for the 350 °C composite and 3.45 eV for the 600 °C composites. The results of FTIR spectroscopy confirm the presence of the TiO2 phase. The results of the photocatalytic tests of the composites show the (C − C0)/C0 ratio goes from 0.05 to 0.71 when the annealing temperature goes from 350 to 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

Data availability

All data related to this article have been provided in this article.

References

  1. V. Hasija, S. Patial, P. Raizada, A.A.P. Khan, A.M. Asiri, Q. Van Le, V.H. Nguyen, P. Singh, Covalent organic frameworks promoted single metal atom catalysis: strategies and applications. Coord. Chem. Rev. 452, 214298 (2022)

    Article  CAS  Google Scholar 

  2. X. Yang, H. Zhao, J.F. Feng, Y.N. Chen, S.Y. Gao, R. Cao, Visible-light-driven selective oxidation of alcohols using a dye-sensitized TiO2-polyoxometalate catalyst. J. Catal. 351, 59 (2017)

    Article  CAS  Google Scholar 

  3. X. Liu, H. Zhuang, Recent progresses in photocatalytic hydrogen production: design and construction of Ni-based cocatalysts. Int. J. Energy Res 45, 1480–1495 (2021)

    Article  CAS  Google Scholar 

  4. M. Tayyab, Y. Liu, S. Min, R. Muhammad Irfan, Q. Zhu, L. Zhou, J. Lei, J. Zhang, Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. Chin. J. Catal. 43, 1165–1175 (2022)

    Article  Google Scholar 

  5. Y. Liu, Q. Zhu, M. Tayyab, L. Zhou, J. Lei, J. Zhang, Single-atom Pt loaded zinc vacancies ZnO–ZnS induced type-V electron transport for efficiency photocatalytic H2 evolution. Solar RRL 5, 2100536 (2021)

    Article  CAS  Google Scholar 

  6. M. Dorraj, B.T. Goh, N.A. Sairi, P.M. Woi, W.J. Basirun, Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine. Appl. Surf. Sci. 439, 999 (2018)

    Article  CAS  Google Scholar 

  7. J. Ran, M. Jaroniec, S.-Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater 30, 1704649 (2018)

    Article  CAS  Google Scholar 

  8. D. Zhao, Y. Wang, C. Dong, Y. Huang, J. Chen, F. Xue, S. Shen, L. Guo, Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6, 388–397 (2021)

    Article  CAS  Google Scholar 

  9. Q. Guo, C.Y. Zhou, Z.B. Ma, Z.F. Ren, H.J. Fan, X.M. Yang, Elementary photocatalytic chemistry on TiO2 surfaces. Chem Soc Rev 45, 3701 (2016)

    Article  CAS  Google Scholar 

  10. Wu. Di, C. Li, D. Zhang, L. Wang, X. Zhang, Z. Shi, Q. Lin, Enhanced photocatalytic activity of Gd3+ doped TiO2 and Gd2O3 modified TiO2 prepared via ball milling method. J. Rare Earths 37, 845–852 (2019)

    Article  CAS  Google Scholar 

  11. J. Zhang, Wu. Weicheng, S. Yan, G. Chu, S. Zhao, X. Wang, C. Li, Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature. Appl. Surf. Sci. 344, 249–256 (2015)

    Article  CAS  Google Scholar 

  12. N. Tian, Y. Zhang, H. Huang, Y. He, Y. Guo, Influences of Gd substitution on the crystal structure and visible-light-driven photocatalytic performance of Bi2WO6. J. Phys. Chem. C 118, 15640–15648 (2014)

    Article  CAS  Google Scholar 

  13. H.Q. Jiang, Y.D. Liu, J.S. Li, H.Y. Wang, Synergetic effects of lanthanum, nitrogen and phosphorus tri-doping on visible-light photoactivity of TiO2 fabricated by microwave-hydrothermal process. J Rare Earths 34, 604 (2016)

    Article  CAS  Google Scholar 

  14. S. Cao, L. Piao, X. Chen, Emerging photocatalysts for hydrogen evolution. Trend. Chem. 2, 57–70 (2020)

    Article  CAS  Google Scholar 

  15. C. Xia, T.H.C. Nguyen, X.C. Nguyen, S.Y. Kim, D.L.T. Nguyen, P. Raizada, P. Singh, V.H. Nguyen, C.C. Nguyen, V.C. Hoang, Q.V. Le, Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: progress and perspectives. Fuel 307, 121745 (2022)

    Article  CAS  Google Scholar 

  16. G. Sun, H. Xu, H. Li, H. Shu, C. Liu, Q. Zhang, Fabrication and characterization of visible-light-induced photocatalyst Gd2O3/Ag3VO4. React. Kinet. Mech. Catal. 99, 471–484 (2010)

    CAS  Google Scholar 

  17. J. Hu, H. Li, S. Muhammad, Q. Wu, Y. Zhao, Q. Jiao, Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. J Solid State Chem 253, 113 (2017)

    Article  CAS  Google Scholar 

  18. M. Murugalakshmi, G. Mamba, V. Muthuraj, A novel In2S3/Gd2O3 p-n type visible light-driven heterojunction photocatalyst for dual role of Cr(VI) reduction and oxytetracycline degradation. Appl. Surf. Sci. 527, 146890 (2020)

    Article  CAS  Google Scholar 

  19. S. Miar Alipour, D. Friedmann, J. Scott, R. Amal, TiO2/porous adsorbents: recent advances and novel applications. J. Hazard. Mater. 341, 404 (2017)

    Article  CAS  Google Scholar 

  20. E.A. Segura González, D. Olmos, M.A. Lorente, I. Vélaz, J. González-Benito, Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymers 10, 1365 (2018)

    Article  CAS  Google Scholar 

  21. A. Evcin, E. Arlı, Z. Baz, R. Esen, E.G. Sever, Characterization of Ag-TiO2 powders prepared by sol-gel process. Acta Phys. Pol., A 132, 608–611 (2017)

    Article  CAS  Google Scholar 

  22. A. Huang, N. Wang, M. Lei, L. Zhu, Y. Zhang, Z. Lin, D. Yin, H. Tang, Efficient oxidative debromination of decabromodiphenyl ether by TiO2-mediated photocatalysis in aqueous environment. Environ. Sci. Technol. 47, 518–525 (2013)

    Article  CAS  Google Scholar 

  23. M.J. Rivero, O. Iglesias, P. Ribao, I. Ortiz, Kinetic performance of TiO2/Pt/reduced graphene oxide composites in the photocatalytic hydrogen production. Int. J. Hydrogen Energy 44, 101–109 (2019)

    Article  CAS  Google Scholar 

  24. P. Makal, D. Das, Self-doped TiO2 nanowires in TiO2-B single phase, TiO2-B / anatase and TiO2-anatase / rutile heterojunctions demonstrating individual superiority in photocatalytic activity under visible and UV light. Appl. Surf. Sci. 455, 1106–1115 (2018)

    Article  CAS  Google Scholar 

  25. K.C. Ko, S.T. Bromley, J.Y. Lee, F. Illas, Size-dependent level alignment between rutile and anatase TiO2 nanoparticles: implications for photocatalysis. J. Phys. Lett. 8, 5593–5598 (2017)

    CAS  Google Scholar 

  26. F.W. Zhuge, J.J. Qiu, X.M. Li, X.D. Gao, X.Y. Gan, W.D. Yu, Toward hierarchical TiO2 nanotube arrays for efficient dye-sensitized solar cells. Adv. Mater. 23, 1330 (2011)

    Article  CAS  Google Scholar 

  27. J.S. Zhong, Q.Y. Wang, J. Zhou, D.Q. Chen, Z.G. Ji, Highly efficient photoelectrocatalytic removal of RhB and Cr(VI) by Cu nanoparticles sensitized TiO2 nanotube arrays. Appl. Surf. Sci. 367, 342–346 (2016)

    Article  CAS  Google Scholar 

  28. N.Y. Tashkandi, S.M. Albukhari, A.A. Ismail, Mesoporous TiO2 enhanced by anchoring Mn3O4 for highly efficient photocatalyst toward photo-oxidation of ciprofloxacin. Opt. Mater. 127, 112274 (2022)

    Article  CAS  Google Scholar 

  29. V.H. Bui, T.K. Vu, H.T. To, N. Negishi, Application of TiO2-ceramic/UVA photocatalyst for the photodegradation of sulfamethoxazole. Sustain. Chem. Pharm. 26, 100617 (2022)

    Article  CAS  Google Scholar 

  30. S. Mugundan, G. Rajamannan, N. Viruthagiri, R. Shanmugam, P. Gobi, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique. Appl. Nanosci. 5, 449–456 (2015)

    Article  CAS  Google Scholar 

  31. Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300–304 (2002)

    Article  CAS  Google Scholar 

  32. D. Gogoi, A. Namdeo, A.G. Kumar, N.P. Rao, Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting. Int. J. Hydrogen Energy 45, 2729–2744 (2020)

    Article  CAS  Google Scholar 

  33. J. Yu, H. Yu, C.H. Ao, S.C. Lee, J.C. Yu, W. Ho, Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. Thin Solid Films 496, 273–280 (2006)

    Article  CAS  Google Scholar 

  34. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)

    Article  CAS  Google Scholar 

  35. G. Liu, L. Wang, H.G. Yang, H. Cheng, G.Q. Max-Lu, Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2010)

    Article  Google Scholar 

  36. M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. Du, L. Wang, Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem. Int. Ed. 59(18), 7230–7234 (2020)

    Article  CAS  Google Scholar 

  37. S. Jeon, J.-W. Ko, W.-B. Ko, Synthesis of Gd2O3 nanoparticles and their photocatalytic activity for degradation of azo dyes. Catalysts 11, 742 (2021)

    Article  CAS  Google Scholar 

  38. S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 7, 1286–1289 (2007)

    Article  CAS  Google Scholar 

  39. C. Pan, Y. Zhu, Environ new type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Sci. Technol. 44, 5570–5574 (2010)

    Article  CAS  Google Scholar 

  40. A.M. Abu-Dief, A.A. Essawy, A.K. Diab, W.S. Mohamed, Facile synthesis and characterization of novel Gd2O3–CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar illumination. J. Phys. Chem. Solids 148, 109666 (2021)

    Article  CAS  Google Scholar 

  41. D. Hou, L. Feng, J. Zhang, S. Dong, D. Zhou, T.T. Lim, Preparation, characterization and performance of a novel visible light responsive spherical activated carbon-supported Er3+:YFeO3-doped TiO2 photocatalyst. J. Hazard. Mater. 199, 301–308 (2012)

    Article  CAS  Google Scholar 

  42. J. Yuan, E. Wang, Y. Chen, W. Yang, J. Yao, Y. Cao, Doping mode, band structure and photocatalytic mechanism of B-N-codoped TiO2. Appl. Surf. Sci. 257, 7335–7342 (2011)

    Article  CAS  Google Scholar 

  43. N. Qutub, P. Singh, S. Sabir, S. Sagadevan, W.C. Oh, Enhanced photocatalytic degradation of acid blue dye using CdS/TiO2 nanocomposite. Sci. Rep. 12, 5759 (2022)

    Article  CAS  Google Scholar 

  44. Z. Fan, F. Meng, J. Gong, H. Li, Z. Ding, B. Ding, One-step hydrothermal synthesis of mesoporous Ce-doped anatase TiO2 nanoparticles with enhanced photocatalytic activity. J. Mater. Sci. 27, 11866–11872 (2016)

    CAS  Google Scholar 

  45. O. Avilés-García, J. Espino-Valencia, R. Romero-Romero, J.L. Rico-Cerda, M. Arroyo-Albiter, D.A. Solís-Casados, R. Natividad-Rangel, Enhanced photocatalytic activity of titania by Co-doping with Mo and W. Catalysts 8, 631 (2018)

    Article  CAS  Google Scholar 

  46. H. Yu, X. Zheng, Z. Yin, F. Tao, B. Fang, K. Hou, Preparation of nitrogen-doped TiO2 nanoparticle catalyst and its catalytic activity under visible light. Chin. J. Chem. Eng. 15, 802–807 (2007)

    Article  CAS  Google Scholar 

  47. I.A. Mkhalid, J.L.G. Fierro, R.M. Mohamed, A.A. Alshahri, Photocatalytic visible-light-driven removal of the herbicide imazapyer using nanocomposites based on mesoporous TiO2 modified with Gd2O3. Appl. Nanosci. 10, 3773–3786 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is a part of a project from The Dean-ship of Scientifc Research, Imam Abdulrahman Bin Faisal University, Saudi Arabia (To Dr Norah Alonizan, Grant No: 2019-083-Sc).

Author information

Authors and Affiliations

Authors

Contributions

KO performed conceptualization, data analysis, investigation, supervision, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to K. Omri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, K., Alonizan, N. Enhanced photocatalytic performance and impact of annealing temperature on TiO2/Gd2O3:Fe composite. J Mater Sci: Mater Electron 33, 15448–15459 (2022). https://doi.org/10.1007/s10854-022-08451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08451-y

Navigation