Skip to main content
Log in

Synthesis, Spectral Characterisation and Biological Activities of Novel Biomaterial/N, N, O Donor Tridentate Co (II), Ni (II) and Zn (II) Complexes of Hydrazide Based Biopolymer Schiff Base Ligand

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study novel biopolymer and water soluble O-carboxymethyl chitosan Schiff base derivatives have been designed for potential use in biological applications. Chemically modified O-carboxymethyl chitosan Schiff base and their metal complexes were prepared for potential application in antibacterial, antifungal, anti-inflammatory, total antioxidant, antidiabetic avenues. Chitosan possess water insolubility has been eliminated by carboxymethylation. The thermal decompositions of metal complexes results that the chitosan polymer had more thermal stability than Schiff base ligand and their Co (II), Ni (II) and Zn (II) metal complexes. The antibacterial results showed that the Ni (II) metal complexes had more efficacies against the bacteria and fungi. The anti-inflammatory studies of compounds reveals that the nickel (II) complex was denatured about 91.88 ± 3.1% of bovine serum albumin (BSA). The biological studies proved that the synthesized compounds possess better antibacterial, antifungal, anti-inflammatory, antidiabetic and antioxidant in nature.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. 8(3), 203–226 (2006). https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  Google Scholar 

  2. S.S. Silva, J.F. Mano, R.L. Reis, Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 19(5), 1208–1220 (2017). https://doi.org/10.1039/c6gc02827f

    Article  CAS  Google Scholar 

  3. K. Mohan, S. Ravichandran, T. Muralisankar, V. Uthayakumar, R. Chandirasekar, C. Rajeevgandhi, P. Seedevi, Extraction and characterization of chitin from sea snail Conus inscriptus (Reeve, 1843). Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.12.241

    Article  PubMed  Google Scholar 

  4. H.S. Adhikari, P.N. Yadav, Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int. J. Biomater. 2018, 1–29 (2018). https://doi.org/10.1155/2018/2952085

    Article  CAS  Google Scholar 

  5. A. Tolaimate, J. Desbrières, M. Rhazi, A. Alagui, M. Vincendon, P. Vottero, On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer 41(7), 2463–2469 (2000). https://doi.org/10.1016/s0032-3861(99)00400-0

    Article  CAS  Google Scholar 

  6. K. Muraleedharan, C.H. Viswalekshmi, K. Sarada, Synthesis, characterization and thermal dehydration and degradation kinetics of chitosan Schiff bases of o-, m- and p-nitrobenzaldehyde. Polym. Bull. 74(1), 39–54 (2016). https://doi.org/10.1007/s00289-016-1696-1

    Article  CAS  Google Scholar 

  7. A.L. Bukzem, R. Signini, D.M. dos Santos, L.M. Lião, D.P.R. Ascheri, Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. Int. J. Biol. Macromol. 85, 615–624 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  8. F.R. De Abreu, S.P. Campana-Filho, Characteristics and properties of carboxymethylchitosan. Carbohyd. Polym. 75(2), 214–221 (2009). https://doi.org/10.1016/j.carbpol.2008.06.009

    Article  CAS  Google Scholar 

  9. D.N. Dhar, C.L. Taploo, Schiff bases and their applications. J. Sci. Ind. Res. 41, 501–506 (1982)

    CAS  Google Scholar 

  10. P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bartl, Biological properties of schiff bases and azo derivatives of phenols. Curr. Org. Chem. 13(2), 124–148 (2009). https://doi.org/10.2174/138527209787193774

    Article  CAS  Google Scholar 

  11. R. Antony, T. Arun, S.T.D. Manickam, A review on applications of chitosan-based Schiff bases. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.047

    Article  PubMed  Google Scholar 

  12. K. Czarnek, S. Terpiłowska, A.K. Siwicki, Review paper: Selected aspects of the action of cobalt ions in the human body. Central Eur. J. Immunol. 2, 236–242 (2015). https://doi.org/10.5114/ceji.2015.52837

    Article  CAS  Google Scholar 

  13. M. Manimohan, S. Pugalmani, M.A. Sithique, Biologically active novels N, N, O donor tridentate water soluble hydrazide based O-carboxymethyl chitosan Schiff base Cu (II) metal complexes: synthesis and characterisation. Int. J. Biol. Macromol. 136, 738–754 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.115

    Article  CAS  PubMed  Google Scholar 

  14. M. Murugaiyan, S.P. Mani, M.A. Sithique, Zinc (ii) centered biologically active novel N, N, O donor tridentate water-soluble hydrazide-based O-carboxymethyl chitosan Schiff base metal complexes: synthesis and characterisation. New J. Chem. 43, 9540–9554 (2019). https://doi.org/10.1039/c9nj00670b

    Article  CAS  Google Scholar 

  15. M. Manimohan, S. Pugalmani, M.A. Sithique, Biologically active water soluble novel biopolymer/hydrazide based O-carboxymethyl chitosan Schiff bases: synthesis and characterisation. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01487-9

    Article  Google Scholar 

  16. T. Baran, A. Menteş, Polymeric material prepared from Schiff base based on O-carboxymethyl chitosan and its Cu(II) and Pd(II) complexes. J. Mol. Struct. 1115, 220–227 (2016). https://doi.org/10.1016/j.molstruc.2016.03.015

    Article  CAS  Google Scholar 

  17. W. Liu, Y. Qin, S. Liu, R. Xing, H. Yu, X. Chen et al., Synthesis, characterization and antifungal efficacy of chitosan derivatives with triple quaternary ammonium groups. Int. J. Biol. Macromol. 114, 942–949 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.179

    Article  CAS  PubMed  Google Scholar 

  18. R. Antony, S. Theodore David Manickam, K. Saravanan, K. Karuppasamy, S. Balakumar, Synthesis, spectroscopic and catalytic studies of Cu(II), Co(II) and Ni(II) complexes immobilized on Schiff base modified chitosan. J. Mol. Struct. 1050, 53–60 (2013). https://doi.org/10.1016/j.molstruc.2013.07.006

    Article  CAS  Google Scholar 

  19. D. Egli, R. Baumann, S. Küng, A. Berger, L. Baron, M. Herwegh, Structural characteristics, bulk porosity and evolution of an exhumed long-lived hydrothermal system. Tectonophysics (2018). https://doi.org/10.1016/j.tecto.2018.10.008

    Article  Google Scholar 

  20. T. Baran, A. Menteş, Construction of new biopolymer (chitosan)-based pincer-type Pd(II) complex and its catalytic application in Suzuki cross coupling reactions. J. Mol. Struct. 1134, 591–598 (2017). https://doi.org/10.1016/j.molstruc.2017.01.005

    Article  CAS  Google Scholar 

  21. K.R. Krishnapriya, M. Kandaswamy, A new chitosan biopolymer derivative as metal-complexing agent: synthesis, characterization, and metal(II) ion adsorption studies. Carbohyd. Res. 345(14), 2013–2022 (2010). https://doi.org/10.1016/j.carres.2010.06.005

    Article  CAS  Google Scholar 

  22. S. Aslkhademi, N. Noshiranzadeh, M.S. Sadjadi, K. Mehrani, N. Farhadyar, Synthesis, crystal structure and investigation of the catalytic and spectroscopic properties of a Zn(II) complex with Coumarin-hydrazone ligand. Polyhedron (2018). https://doi.org/10.1016/j.poly.2018.12.023

    Article  Google Scholar 

  23. Q. Song, Z. Zhang, J. Gao, C. Ding, Synthesis and property studies of N-carboxymethyl chitosan. J. Appl. Polym. Sci. 119(6), 3282–3285 (2010). https://doi.org/10.1002/app.32925

    Article  CAS  Google Scholar 

  24. S. Yadav, I. Yousuf, M. Usman, M. Ahmad, F. Arjmand, S. Tabassum, Synthesis and spectroscopic characterization of diorganotin (iv) complexes of N′-(4-hydroxypent-3-en-2-ylidene) isonicotinohydrazide: chemotherapeutic potential validation by in vitro interaction studies with DNA/HSA, DFT, molecular docking and cytotoxic activity. RSC Adv. 5(63), 50673–50690 (2015). https://doi.org/10.1039/c5ra06953j

    Article  CAS  Google Scholar 

  25. E.L. De Araújo, H.F.G. Barbosa, E.R. Dockal, ÉT.G. Cavalheiro, Synthesis, characterization and biological activity of Cu(II), Ni(II) and Zn(II) complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan. Int. J. Biol. Macromol. 95, 168–176 (2017). https://doi.org/10.1016/j.ijbiomac.2016.10.109

    Article  CAS  PubMed  Google Scholar 

  26. A.A. Alhwaige, H. Ishida, S. Qutubuddin, Poly (benzoxazine-f-chitosan) films: the role of aldehyde neighboring groups on chemical interaction of benzoxazine precursors with chitosan. Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2019.01.016

    Article  PubMed  Google Scholar 

  27. A.B. Muley, M.R. Ladole, P. Suprasanna, S.G. Dalvi, Intensification in biological properties of chitosan after γ-irradiation. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.072

    Article  PubMed  Google Scholar 

  28. O.A.M. Ali, S.M. El-Medani, D.A. Ahmed, D.A. Nassar, Synthesis, characterization, fluorescence and catalytic activity of some new complexes of unsymmetrical Schiff base of 2-pyridinecarboxaldehyde with 2, 6-diaminopyridine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 144, 99–106 (2015). https://doi.org/10.1016/j.saa.2015.02.078

    Article  CAS  Google Scholar 

  29. L. Wei, Y. Mi, J. Zhang, Q. Li, F. Dong, Z. Guo, Evaluation of quaternary ammonium chitosan derivatives differing in the length of alkyl side-chain: synthesis and antifungal activity. Int. J. Biol. Macromol. 129, 1127–1132 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.099

    Article  CAS  PubMed  Google Scholar 

  30. H. Barbosa, M. Attjioui, A. Ferreira, E. Dockal, N. El Gueddari, B. Moerschbacher, É Cavalheiro, Synthesis, characterization and biological activities of biopolymeric schiff bases prepared with chitosan and salicylaldehydes and their Pd(II) and Pt(II) complexes. Molecules 22(11), 1987 (2017). https://doi.org/10.3390/molecules22111987

  31. R. Sribalan, M. Kirubavathi, G. Banuppriya, V. Padmini, Synthesis and biological evaluation of new symmetric curcumin derivatives. Bioorg. Med. Chem. Lett. 25(19), 4282–4286 (2015). https://doi.org/10.1016/j.bmcl.2015.07.088

    Article  CAS  PubMed  Google Scholar 

  32. T.S. Saranya, V.K. Rajan, R. Biswas, R. Jayakumar, S. Sathianarayanan, Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int. J. Biol. Macromol. 110, 227–233 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.044

    Article  CAS  PubMed  Google Scholar 

  33. J. Zhang, W. Tan, G. Wang, X. Yin, Q. Li, F. Dong, Z. Guo, Synthesis, characterization, and the antioxidant activity of N, N, N -trimethyl chitosan salts. Int. J. Biol. Macromol. 118, 9–14 (2018)

    Article  Google Scholar 

  34. T.M. Chaouche, F. Haddouchi, R. Ksouri, F. Atik-Bekkara, Evaluation of antioxidant activity of hydromethanolic extracts of some medicinal species from South Algeria. J. Chin. Med. Assoc. 77(6), 302–307 (2014)

    Article  Google Scholar 

  35. W. Zhu, Z. Zhang, Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential. Int. J. Biol. Macromol. 70, 150–155 (2014). https://doi.org/10.1016/j.ijbiomac.2014.06.047

    Article  CAS  PubMed  Google Scholar 

  36. Y. Liu, S. Zeng, Y. Liu, W. Wu, Y. Shen, L. Zhang, C. Wang, Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int. J. Biol. Macromol. 114, 632–639 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the PG and Research Department of Chemistry, Islamiah College (Autonomous), Vaniyambadi, Tirupattur (Dt), Tamil Nadu, India for providing the laboratory and the Instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Aboobucker Sithique.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimohan, M., Pugalmani, S. & Sithique, M.A. Synthesis, Spectral Characterisation and Biological Activities of Novel Biomaterial/N, N, O Donor Tridentate Co (II), Ni (II) and Zn (II) Complexes of Hydrazide Based Biopolymer Schiff Base Ligand. J Inorg Organomet Polym 30, 4481–4495 (2020). https://doi.org/10.1007/s10904-020-01578-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01578-7

Keywords

Navigation