Skip to main content
Log in

An Enhanced Fast Ethanol Sensor Based on Zinc Oxide/Nickel Oxide Nanocomposite in Dynamic Situations

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Measuring ethanol levels in dynamic conditions calls for smart fast response sensors. Herein we report, fabrication and characterization of a Zinc oxide/Nickel oxide nanocomposite (ZN) for use as an ethanol gas (ET) sensor. Based on XRD, FESEM, and BET measurements, it is found that the formed ZN has a novel nano-worm morphology, and the specific surface area about 19.5 m2 gm−1. The ET sensing results of the ZN sensor (ZNS) toward 0.025 vol% ET demonstrated an appropriate response value of 32.48% with a less response/recovery time of 2.7/3.6 s at room temperature. Moreover, the effect of various humidity levels on the sensor response as a function of gas concentration investigated. Our handmade sensor revealed not only long-term stability over four months with a small degradation of 9%, but also the excellent selectivity toward the ET than other gases. Finally, the ET sensing mechanism of the ZNS discussed, as well.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Shankar, J. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases. Sci. Lett. J. 4(126), 1–18 (2015)

    Google Scholar 

  2. X. Song, H. Fu, X. Li, X. Yi, H. Chu, C. Wang, Facile and rapid preparation of ZnO nanomaterials with different morphologies and superficial structures for enhanced ethanol—sensing performances. J. Inorg. Organomet. Polym. 29, 33–40 (2019)

    CAS  Google Scholar 

  3. J. Huang, T. Yang, Y. Kang, Y. Wang, S. Wang, Gas sensing performance of polyaniline/ZnO organic—inorganic hybrids for detecting VOCs at low temperature. J. Nat. Gas. Chem. 20, 515–519 (2011)

    CAS  Google Scholar 

  4. E. Karaköse, H. Çolak, Structural and optical properties of ZnO nanorods prepared by spray pyrolysis method. Energy 140, 92–97 (2017)

    Google Scholar 

  5. Q. Wei, P. Song, Z. Yang, Q. Wang, Hierarchical assembly of Fe2O3 nanorods on SnO2 nanospheres with enhanced ethanol sensing properties. Physica E 103, 156–163 (2018)

    CAS  Google Scholar 

  6. E. Wongrat, W. Ponhan, S. Choopun, Room temperature ethanol sensing properties of FET sensors based on ZnO nanostructures. Ceram. Int. 43, 520–524 (2017)

    Google Scholar 

  7. J. Fang, Y. Zhu, D. Wu, C. Zhang, S. Xu, D. Xiong, P. Yang, L. Wang, P. Chu, Gas sensing properties of NiO/SnO2 heterojunction thin film. Sens. Actuators B. 252, 1163–1168 (2017)

    CAS  Google Scholar 

  8. P.S. Kolhe, P.S. Shirke, N. Maiti, M.A. More, K.M. Sonawane, Facile hydrothermal synthesis of WO3 nanoconifer thin film: multifunctional behavior for gas sensing and field emission applications. J. Inorg. Organomet. Polym. 29, 41–48 (2019)

    CAS  Google Scholar 

  9. J. Cao, Y. Gong, Y. Wang, B. Zhang, H. Zhang, G. Sun, H. Bala, Z. Zhang, Cocoon-like ZnO decorated graphitic carbon nitride nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. Mater. Lett. 198, 76–80 (2017)

    CAS  Google Scholar 

  10. M. Naderi Nasrabadi, Y. Mortazavia, A. Khodadadi, Highly sensitive and selective Gd2O3-doped SnO2 ethanol sensors synthesized by a high temperature and pressure solvothermal method in a microreactor. Sens. Actuators B 230, 130–0139 (2016)

    CAS  Google Scholar 

  11. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B 162, 237–243 (2012)

    CAS  Google Scholar 

  12. L. Zhao, Y. Xie, Z. Zhang, X. Wang, Y. Qi, T. Wang, R. Wang, C. Cui, Fabrication and properties of biodegradable ZnO nano-rods/porous Zn scaffolds. Mater. Charact. 144, 227–238 (2018)

    CAS  Google Scholar 

  13. B. Zhang, W. Fu, H. Li, X. Fu, Y. Wang, H. Bala, X. Wang, G. Sun, J. Cao, Z. Zhang, Synthesis and enhanced gas sensing properties of flower-like ZnO nanorods decorated with discrete CuO nanoparticles. Mater. Lett. 176, 13–16 (2016)

    CAS  Google Scholar 

  14. J. Wang, J. Yang, N. Han, X. Zhou, S. Gong, J. Yang, P. Hu, Y. Chen, Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials. Mater. Des. 121, 69–76 (2017)

    CAS  Google Scholar 

  15. F. Cao, C. Li, M. Li, H. Li, X. Huang, B. Yang, Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Appl. Surf. Sci. 447, 173–181 (2018)

    CAS  Google Scholar 

  16. A. Hastir, N. Kohli, R.C. Singh, Ag doped ZnO nanowires as highly sensitive ethanol gas sensor. Mater. Today: Proc. 4, 9476–9480 (2017)

    Google Scholar 

  17. M. Sudha, S. Radha, S. Kirubaveni, R. Kiruthika, R. Govindaraj, N. Santhosh, Experimental study on structural, optoelectronic and room temperature sensing performance of Nickel doped ZnO based ethanol sensors. Solid. State. Sci. 78, 30–39 (2018)

    CAS  Google Scholar 

  18. J. Liu, T. Wang, B. Wang, P. Sun, Q. Yang, X. Liang, H. Song, G. Lu, Highly sensitive and low detection limit of ethanol gas sensor basedon hollow ZnO/SnO2 spheres composite material. Sens. Actuators B 245, 551–559 (2017)

    CAS  Google Scholar 

  19. M. Yin, F. Wang, H. Fan, L. Xu, S. Liu, Heterojunction CuO@ZnO microcubes for superior p-type gas sensor application. J. Alloy. Compd. 672, 374–379 (2016)

    CAS  Google Scholar 

  20. M. Gholami, A. Khodadadi, A. Anaraki Firooz, Y. Mortazavi, In2O3–ZnO nanocomposites: high sensor response and selectivityto ethanol. Sens. Actuators B 212, 395–403 (2015)

    CAS  Google Scholar 

  21. X. Deng, L. Zhang, J. Guo, Q. Chen, J. Ma, ZnO enhanced NiO-based gas sensors towards ethanol. Mater. Res. Bull. 90, 170–174 (2017)

    CAS  Google Scholar 

  22. Y. Lu, Y. Ma, S. Ma, S. Yan, Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor. Ceram. Int. 43, 7508–7515 (2017)

    CAS  Google Scholar 

  23. M. Tadic, D. Nikolic, M. Panjan, G. Blake, Magnetic properties of NiO (nickel oxide) nanoparticles: blocking temperature and Neel temperature. J. Alloy. Compd. 647, 1061–1068 (2015)

    CAS  Google Scholar 

  24. X. Li, D. Li, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, X. Wang, Calcination-temperature-dependent gas-sensing properties of mesoporous nickel oxides nanowires as ethanol sensors. Powder Technol. 318, 40–45 (2017)

    CAS  Google Scholar 

  25. L. Hu, J. Sun, J. Han, Y. Duan, T. Han, An AIE luminogen as a multi-channel sensor for ethanol. Sens. Actuators B 239, 467–473 (2017)

    CAS  Google Scholar 

  26. G. Horvat, K. Xhanari, M. Finšgar, L. Gradišnik, U. Maver, Ž. Knez, Z. Novak, Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr. Polym. 166, 365–376 (2017)

    PubMed  CAS  Google Scholar 

  27. A. Wouters, I. Rombouts, E. Fierens, K. Brijs, C. Blecker, J. Delcour, Impact of ethanol on the air-water interfacial properties of enzymatically hydrolyzed wheat gluten. Colloids Surf. A 529, 659–667 (2017)

    CAS  Google Scholar 

  28. A. Jawad, K. Hadeed, Ethanol and its Halal status in food industries. Trends. Food. Sci. Technol. 58, 14–20 (2016)

    Google Scholar 

  29. C. Coronado, J. Carvalho, J. Andrade, A. Mendiburu, E. Cortez, F. Carvalhoa, B. Gonçalves, J. Quintero, E. Gutiérrez Velásquez, M. Silva, J. Santos, M. Nascimento, Flammability limits of hydrated and anhydrous ethanol at reduced pressures inaeronautical applications. J. Hazard. Mater. 280, 174–184 (2014)

    PubMed  CAS  Google Scholar 

  30. P. Rao, R. Godbole, S. Bhagwat, Nanocrystalline Pd: NiFe2O4 thin films: a selective ethanol gas sensor. J. Magn. Magn. Mater. 416, 292–298 (2016)

    CAS  Google Scholar 

  31. X. Liu, L. Jiang, X. Jiang, X. Tian, Y. Huang, P. Hou, S. Zhang, X. Xu, Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route. Appl. Surf. Sci. 447, 49–56 (2018)

    CAS  Google Scholar 

  32. L. Nehru, C. Sanjeeviraja, Zinc oxide nanoparticles synthesized by microwave-assisted combustion method and their potential for ethonal gas detection. Int. J. Mater. Eng. 6(5), 166–172 (2016)

    Google Scholar 

  33. P. Dwivedia, N. Chauhanb, P. Vivekanandanb, S. Dasa, D. Sakthi Kumarb, S. Dhanekar, Scalable fabrication of prototype sensor for selective and sub-ppmlevel ethanol sensing based on TiO2 nanotubes decorated porous silicon. Sens. Actuators B 249, 602–610 (2017)

    Google Scholar 

  34. M. Tonezzer, D.T.T. Le, T.Q. Huy, S. Iannotta, Dual-selective hydrogen and ethanol sensor for steam. Sens. Actuators B 236, 1011–1019 (2016)

    CAS  Google Scholar 

  35. A.O. Juma, E.A. Arbab, C.M. Muiva, L.M. Lepodise, G.T. Mola, Synthesis and characterization of CuO-NiO-ZnO mixed metal oxide nanocomposite. J. Alloys Compd. 723, 866–872 (2017)

    CAS  Google Scholar 

  36. A. Umar, A.A. Alshahrani, H. Algarni, R. Kumar, CuO nanosheets as potential scaffolds for gas sensing applications. Sens. Actuators B 250, 24–31 (2017)

    CAS  Google Scholar 

  37. X. Xing, X. Xiao, L. Wang, Y. Wang, Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens. Actuators B 247, 797–806 (2017)

    CAS  Google Scholar 

  38. Y.C. Feng, Y. Meng, F.X. Li, Z.P. Lv, J.W. Xue, Synthesis of mesoporous LTA zeolites with large BET areas. J. Porous Mater. 20, 465–471 (2013)

    CAS  Google Scholar 

  39. T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J. Phys. Chem. C 113, 12854–12862 (2009)

    CAS  Google Scholar 

  40. E.E. Elemike, D.C. Onwudiwe, M. Singh, Eco-friendly synthesis of copper oxide, zinc oxide and copper oxide-zinc oxide nanocomposites, and their anticancer applications. J. Inorg. Organomet. Polym. 30, 400–409 (2020)

    CAS  Google Scholar 

  41. A.A. Sakib, S.M. Masum, J. Hoinkis, R. Islam, M.A. Molla, Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye. J. Compos. Sci. 91(3(3)), 1–13 (2019)

    Google Scholar 

  42. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, CuO cauliflowers for supercapacitor application: novel potentiodynamic deposition. Mater. Res. Bull. 48, 923–928 (2013)

    CAS  Google Scholar 

  43. A. Barman, A. De, M. Das, Stabilization and dispersion of ZnO nanoparticles in PVA matrix. J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01395-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahruz Nasirian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hezarjaribi, S.T., Nasirian, S. An Enhanced Fast Ethanol Sensor Based on Zinc Oxide/Nickel Oxide Nanocomposite in Dynamic Situations. J Inorg Organomet Polym 30, 4072–4081 (2020). https://doi.org/10.1007/s10904-020-01556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01556-z

Keywords

Navigation