Skip to main content
Log in

Pyrolysis Effect on Physical Properties of Carbon–Silica Nano-composites Elaborated by Sol–Gel Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Author Correction to this article was published on 18 January 2021

This article has been updated

Abstract

In this work, nanocomposites have been developed from the incorporation of silica nanoparticles with a 70% of the started mass material into a carbon matrix based on resorcinol and formaldehyde (RF) by the sol–gel system, then the samples are put in an oven for slow drying by step of 10 °C/day until 150 °C then pyrolysed at 675 °C (RF–SiO2-0.70–675), 700 °C (RF–SiO2-0.70–700) and 725 °C (RF–SiO2-0.70–725) under inert atmosphere for 2 h. We are interested in the percolation zone from 675 °C to 725 °C, where the behaviour of the matter changes from an insulating state to a semiconductor state as a function of the pyrolysis temperature, we carry out the structural and morphological and electrical characterization of these nanocomposites. The XRD analysis shows that all samples have amorphous phases the existence of two phases: insulating silica (SiO2) and graphite (C).The TEM images of samples show that the materials were mainly composed by spherical nanoparticles of 26 to 32 nm in diameter. Nevertheless, the same transition was also observed for the sample RF–SiO2-0.70–700 when the measurement temperature varied between 140 and 160 K. The carbon–silica nanocomposites can be synthesized with engineered conductivity and morphology and thus can be used in several technological domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 18 January 2021

    The original version of this article unfortunately contained mistakes. There was a typo in the university name. "Princess Nora Bint Abdulrahman University" should read as "Princess Nourah Bint Abdulrahman University" in the first affiliation and in the Acknowledgments section.

References

  1. X. Zheng, S. Kim, P. Park, Composites A 121, 449 (2019)

    Article  CAS  Google Scholar 

  2. Y. Xin, Y. Takeuchi, M. Hattori, T. Shirai, J. Eur. Ceram. Soc. 39, 4440 (2019)

    Article  CAS  Google Scholar 

  3. G. Sandi, H. Joachin, R. Kizilel, S. Seifert, K.A. Carrado, Chem. Mater. 15, 838 (2003)

    Article  CAS  Google Scholar 

  4. T. Fujigaya, Bull. Chem. Soc. Jpn. 92, 400 (2019)

    Article  CAS  Google Scholar 

  5. M. Idrees, S. Batool, J. Kong, Q. Zhuang, H. Liu, Q. Shao, N. Lu, Y.Y. Feng, E.K. Wujcik, Q. Gao, T. Ding, R.B. Wei, Z.H. Guo, Electrochim. Acta 296, 925 (2019)

    Article  CAS  Google Scholar 

  6. Y. Guo, Z. Lyu, X. Yang, Lu Yuanjin, K. Ruan, Wu Yalan, J. Kong, Gu Junwei, Composites B 164, 732 (2019)

    Article  CAS  Google Scholar 

  7. T. Kawai, S. Nakao, H. Nishide, K. Oyaizu, Bull. Chem. Soc. Jpn. 91, 721 (2018)

    Article  CAS  Google Scholar 

  8. W.J.E. Beek, M.M. Wienk, M. Kemerink, X. Yang, R.A.J. Janssen, J. Phys. Chem. B 109, 9505 (2005)

    Article  CAS  Google Scholar 

  9. M. Zielinski, R. Wojcieszak, S. Monteverdi, M. Mercy, M.M. Bettahar, Int. J. Hydrog. Energy 32, 1024 (2007)

    Article  CAS  Google Scholar 

  10. K. Omri, O.M. Lemine, L. El Mir, Ceram. Int. 43, 6585 (2017)

    Article  CAS  Google Scholar 

  11. K. Omri, N. Alonizan, J. Inorg. Organomet. Polym. Mater. 29, 203 (2019)

    Article  CAS  Google Scholar 

  12. S. Guadria, I. Najeh, L. El Mir, J. Phys Chem. Solids 110, 290 (2015)

    Article  Google Scholar 

  13. Y.-Y. Hsieh, Y.-C. Tsai, H.-P. Lina, C.-H. Hsu, J. Chin. Chem. Soc. 64, 427 (2017)

    Article  CAS  Google Scholar 

  14. M. Grujicic, C.L. Zhao, E.C. Dusel, D.R. Morgan, R.S. Miller, D.E. Beasley, J. Mater. Sci. 41, 8244 (2006)

    Article  CAS  Google Scholar 

  15. Ya Zhong, J. Zhang, Wu Xiaodong, X. Shen, S. Cui, Lu Chunhua, J. Sol Gel Sci. Technol. 84, 129 (2017)

    Article  CAS  Google Scholar 

  16. Xu Hua-Gen, Qu Mu-Chao, Y.-M. Pan, D.W. Schubert, Chin. J. Polym. Sci. 38, 288 (2020)

    Article  Google Scholar 

  17. K. Omri, R. Lahouli, L. El Mir, Results Phys. 12, 2141 (2019)

    Article  Google Scholar 

  18. Y.P. Zhao, L.S. Wang, T.X. Yu, J. Adhes. Sci. Technol. 17, 519 (2003)

    Article  CAS  Google Scholar 

  19. M.F. Uddin, C.T. Sun, Compos. Sci. Technol. 70, 223 (2010)

    Article  CAS  Google Scholar 

  20. I. Najeh, N. Ben Mansour, M. Mbarki, A. Houas, J.P. Nogier, L. El Mir, Solid State Sci. 11, 1747 (2009)

    Article  CAS  Google Scholar 

  21. I. Najeh, N. Ben Mansour, H. Dahman, L. El Mir, Sens. Lett. 9, 2245 (2011)

    Article  CAS  Google Scholar 

  22. W. Zhang, R.S. Blackburn, A. Dehghani-Sanij, Scr. Mater. 57, 949 (2007)

    Article  CAS  Google Scholar 

  23. L. Chen, J. Hou, Y. Chen, H. Wang, Y. Duan, J. Zhang, Composites B 178, 107465 (2019)

    Article  CAS  Google Scholar 

  24. I. Najeh, N. Ben Mansour, H. Dahman, A. Alyamani, L. El Mir, J. Phys. Chem. 73, 707 (2012)

    CAS  Google Scholar 

  25. M. Ibrahim, J. Alarifi, Mater. Res. Technol. 8, 4863 (2019)

    Article  Google Scholar 

  26. H.M. Zaki, Phys. B 363, 232 (2005)

    Article  CAS  Google Scholar 

  27. Z. Huang, Z. Zheng, S. Zhao, S. Dong, P. Luo, L. Chen, Mater. Des. 133, 570 (2017)

    Article  CAS  Google Scholar 

  28. S. Gorsee, B. Ouvrard, M. Goune, A. Poulon-Quintin, J. Alloys Compd. 633, 42 (2015)

    Article  Google Scholar 

  29. N. Ben Mansour, W. Djeridi, L. El Mir, J. Inorg. Organomet. Polym. Mater. 29, 192 (2019)

    Article  CAS  Google Scholar 

  30. S.K. Kandasamy, K. Kandasamy, J. Inorg. Organomet. Polym. Mater. 28, 559 (2018)

    Article  CAS  Google Scholar 

  31. S. Maji, L.K. Shrestha, K. Ariga, J. Inorg. Organomet. Polym. Mater. 30, 42 (2020)

    Article  CAS  Google Scholar 

  32. N. Ben Mansour, L. El Mir, Solid State Sci. 85, 38 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported by a grant from the Deanship of Scientific Research, Princess Nora Bint Abdul Rahman University ( 37-K-181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Omri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouadria, S., Elqahtani, Z.M., Alharbi, F.F. et al. Pyrolysis Effect on Physical Properties of Carbon–Silica Nano-composites Elaborated by Sol–Gel Method. J Inorg Organomet Polym 30, 3317–3324 (2020). https://doi.org/10.1007/s10904-020-01521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01521-w

Keywords

Navigation