Skip to main content
Log in

Spectroscopic and Electrical Properties of Ag2S/PVA Nanocomposite Films for Visible-Light Optoelectronic Devices

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polymer nanocomposites are potential materials in the industrial sector and in our daily life due to their diverse properties and applications. Throughout the present study, solution casting technique has been used to prepare polyvinyl alcohol (PVA) filled with different weight (wt.) ratios percentages (%) (0, 0.01, 0.1, 1.0 and 10.0 wt%) of silver sulfide nanoparticles (Ag2S NPs). The concentration dependence of spectroscopic and electrical behaviors based on PVA polymer dispersed with Ag2S has been investigated. The prepared films with the variation of loading filler concentrations from 0 to 10 wt% have been characterized by different spectroscopic techniques. Fourier transform infrared (FTIR) analysis confirmed the successful incorporation of Ag2S nanoparticles in the PVA matrix by studying the changes of the characterizing bands which reveal the interaction within the composite structure. Whilst photoluminescence (PL) spectra of the Ag2S/PVA nanocomposite films showed an interesting peak covering the entire range of interest for visible light optoelectronic devices at a very low concentration of the loading filler of Ag2S. The electrical properties of the plain and Ag2S NPs doped PVA nanocomposites have been studied using DC electrical conductivity (σDC) measurements performed over a temperature (T) range from 298 to 373 K. The study demonstrates the increase of the DC electrical conductivity with increasing filler content of Ag2S by three orders of magnitude. DC conductivity also showed temperature dependent behavior where the conductivity enhanced by five orders of magnitude when temperature increased up to 373 K. These novel results present Ag2S/PVA nanocomposites as a promising material in optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Akamatsu, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 359(1), 55–60 (2000)

    CAS  Google Scholar 

  2. A. Badawi, Characterization of the optical and mechanical properties of cdse qds/pmma nanocomposite films. J. Mater. Sci.: Mater. Electron. 26(6), 3450–3457 (2015)

    CAS  Google Scholar 

  3. P. Basyach, A. Choudhury, Structural and optical properties of core–shell ag2s/hgs nanostructures. Mater. Res. Bull. 48(7), 2543–2548 (2013)

    CAS  Google Scholar 

  4. C. Cui, X. Li, J. Liu, Y. Hou, Y. Zhao, G. Zhong, Synthesis and functions of ag2s nanostructures. Nanoscale Res. Lett. 10(1), 431 (2015)

    PubMed  PubMed Central  Google Scholar 

  5. W. Lim, Y. Yap, W. Chong, H. Ahmad, All-optical graphene oxide humidity sensors. Sensors 14(12), 24329–24337 (2014)

    PubMed  CAS  Google Scholar 

  6. X. Zhang, Y. Gu, H. Chen, Synthesis of biocompatible near infrared fluorescence ag2s quantum dot and its application in bioimaging. J. Innov. Opt. Health Sci. 7(03), 1350059 (2014)

    Google Scholar 

  7. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. Phys. Chem. B 107(3), 668–677 (2003)

    CAS  Google Scholar 

  8. S. Berciaud, L. Cognet, P. Tamarat, B. Lounis, Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett. 5(3), 515–518 (2005)

    PubMed  CAS  Google Scholar 

  9. P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3), 788–800 (1996)

    CAS  Google Scholar 

  10. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (pva) based nanocomposite. J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015)

    CAS  Google Scholar 

  11. M.H. Kang, S.H. Kim, S. Jang, J.E. Lim, H. Chang, K.-J. Kong, S. Myung, J.K. Park, Synthesis of silver sulfide nanoparticles and their photodetector applications. RSC Adv. 8(50), 28447–28452 (2018)

    CAS  Google Scholar 

  12. A. Dan, B. Satpati, P. Satyam, D. Chakravorty, Diodelike behavior in glass–metal nanocomposites. J. Appl. Phys. 93(8), 4794–4800 (2003)

    CAS  Google Scholar 

  13. M. Anni, Polymer-ii-vi nanocrystals blends: basic physics and device applications to lasers and leds. Nanomaterials 9(7), 1036 (2019)

    PubMed Central  CAS  Google Scholar 

  14. X. Chen, T. H. Kang, M. Hammig, E. Johnson, J. Christian, Development of wide-band-gap alxga1-xas (x %3e 0.7) photodiodes. In: Hard X-ray, Gamma-ray, and Neutron Detector Physics XVII, vol. 9593, p. 95931C, International Society for Optics and Photonics, 2015.

  15. R. Zamiri, H.A. Ahangar, A. Zakaria, G. Zamiri, M. Shabani, B. Singh, J. Ferreira, The structural and optical constants of ag 2 s semiconductor nanostructure in the far-infrared. Chem. Cent. J. 9(1), 28 (2015)

    PubMed  PubMed Central  Google Scholar 

  16. S.I. Sadovnikov, Y.V. Kuznetsova, A.A. Rempel, Ag2s silver sulfide nanoparticles and colloidal solutions: Synthesis and properties. Nano-Struct. Nano Obj. 7, 81–91 (2016)

    CAS  Google Scholar 

  17. Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang, Ag2s quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5), 3695–3702 (2012)

    PubMed  PubMed Central  CAS  Google Scholar 

  18. A. Tubtimtae, K.-Y. Cheng, M.-W. Lee, Ag 2 s quantum dot-sensitized wo 3 photoelectrodes for solar cells. J. Solid State Electrochem. 18(6), 1627–1633 (2014)

    CAS  Google Scholar 

  19. A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, G.J. Wang, Ag2s quantum dot-sensitized solar cells. Electrochem. Commun. 12(9), 1158–1160 (2010)

    CAS  Google Scholar 

  20. S. Yan, K. Shen, X. Xu, Y. Shi, J. Wu, Z. Xiao, Formation of ag2s nanowires and ag2s/cds heterostructures via simple solvothermal route. Synth. Met. 161(15–16), 1646–1650 (2011)

    CAS  Google Scholar 

  21. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Quantized conductance atomic switch. Nature 433(7021), 47 (2005)

    PubMed  CAS  Google Scholar 

  22. J.N. Martins, M. Kersch, V. Altstädt, R.V. Oliveira, Electrical conductivity of poly (vinylidene fluoride)/polyaniline blends under oscillatory and steady shear conditions. Polym. Test. 32(5), 862–869 (2013)

    CAS  Google Scholar 

  23. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, Enhancement of the optical and mechanical properties of chitosan using fe 2 o 3 nanoparticles. J. Mater. Sci.: Mater. Electron. 28(15), 10877–10884 (2017)

    CAS  Google Scholar 

  24. N. Al-Hosiny, S. Abdallah, M. Moussa, A. Badawi, Optical, thermophysical and electrical characterization of pmma (cdse qds) composite films. J. Polym. Res. 20(2), 76 (2013)

    Google Scholar 

  25. M. Aslam, M.A. Kalyar, Z.A. Raza, Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci. 58(12), 2119–2132 (2018)

    CAS  Google Scholar 

  26. N. Mahanta, S. Valiyaveettil, Surface modified electrospun poly (vinyl alcohol) membranes for extracting nanoparticles from water. Nanoscale 3(11), 4625–4631 (2011)

    PubMed  CAS  Google Scholar 

  27. M. Aslam, M.A. Kalyar, Z.A. Raza, Investigation of zinc oxide-loaded poly (vinyl alcohol) nanocomposite films in tailoring their structural, optical and mechanical properties. J. Electron. Mater. 47(7), 3912–3926 (2018)

    CAS  Google Scholar 

  28. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Structural and optical characterization of pva: Kmno4 based solid polymer electrolyte. Results Phys. 6, 1103–1108 (2016)

    Google Scholar 

  29. S.B. Aziz, Modifying poly (vinyl alcohol)(pva) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45(1), 736–745 (2016)

    CAS  Google Scholar 

  30. G. Suma, N.K. Subramani, K. Shilpa, S. Sachhidananda, S. Satyanarayana et al., Effect of Ce0.5Zr0.5O2 nano fillers on structural and optical behaviors of poly (vinyl alcohol). J. Mater. Sci.: Mater. Electron. 28(14), 10707–10714 (2017)

    CAS  Google Scholar 

  31. O.G. Abdullah, S.A. Saleem, Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly (vinyl alcohol) films. J. Electron. Mater. 45(11), 5910–5920 (2016)

    CAS  Google Scholar 

  32. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of cus nanoparticle with a distinguishable spr peak in nir region. J. Mater. Sci.: Mater. Electron. 27(5), 4163–4171 (2016)

    CAS  Google Scholar 

  33. T. Siddaiah, P. Ojha, N.O. Kumar, C. Ramu, Structural, optical and thermal characterizations of pva/maa: Ea polyblend films. Mater. Res. 21(5), e20170987 (2018)

    CAS  Google Scholar 

  34. E. Abdelrazek, I. Elashmawi, S. Labeeb, Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of pva/pvp blend films. Phys. B 405(8), 2021–2027 (2010)

    CAS  Google Scholar 

  35. R. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, S.P. Nayak, B. Poojary, Microstructural studies on BaCl2 doped poly (vinyl alcohol). Polymer 47(10), 3591–3598 (2006)

    CAS  Google Scholar 

  36. G.H. Kumar, J.L. Rao, N. Gopal, K. Narasimhulu, R. Chakradhar, A.V. Rajulu, Spectroscopic investigations of mn2+ ions doped polyvinylalcohol films. Polymer 45(16), 5407–5415 (2004)

    CAS  Google Scholar 

  37. A. Abdelghany, E. Abdelrazek, A. Tarabiah, Modeling and physical properties of lead sulphide/polyvinyl alcohol nano-composite. Quantum Matter 5(2), 257–262 (2016)

    Google Scholar 

  38. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A. Theory and Applications in Inorganic Chemistry, 6th edn. (Wiley, New York, 2008)

    Google Scholar 

  39. Y.-Y. Kim, D. Walsh, Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions. Nanoscale 2(2), 240–247 (2010)

    PubMed  CAS  Google Scholar 

  40. A. Aljaafari, S. Ibrahim, T. El-Brolossy, Thermophysical and electrical characterization of pvc–swnt nanocomposites. Composites A 42(4), 394–399 (2011)

    Google Scholar 

  41. A. Al-Hossainy, M.S. Zoromba, New organic semiconductor thin film derived from p-toluidine monomer. J. Mol. Struct. 1156, 83–90 (2018)

    CAS  Google Scholar 

  42. M.O. Reddy, B. ChandraBabu, Structural, optical, electrical, and magnetic properties of pva: Gd3. Indian J. Mater. Sci. (2015). https://doi.org/10.1155/2015/927364

    Article  Google Scholar 

  43. J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, P. Mavinakuli, A.B. Karki, D.P. Young, Z. Guo, Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J. Phys. Chem. C 114(39), 16335–16342 (2010)

    CAS  Google Scholar 

  44. E.K. Tawfik, Y. Fawzy, M. El-Ghazaly, H. Ashry, Study of the dc-electrical properties of a novel polyvinyl alcohol/ag hybrid nanocomposites. Phys. Sci. Res. Int. J. 3(2), 26–36 (2015)

    Google Scholar 

  45. S. Mo, L. Peng, C. Yuan, C. Zhao, W. Tang, C. Ma, J. Shen, W. Yang, Y. Yu, Y. Min et al., Enhanced properties of poly (vinyl alcohol) composite films with functionalized graphene. RSC Adv. 5(118), 97738–97745 (2015)

    CAS  Google Scholar 

  46. T. Zhou, X. Qi, Q. Fu, The preparation of the poly (vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets. eXpress Polym. Lett. 7(9), 747 (2013)

    CAS  Google Scholar 

  47. M.A. Habeeb, Enhancement of dielectric and optical properties of (pva-paa-peg) blend-yttrium oxide nanoparticle for biomedical applications. Mater. Focus 5(6), 550–555 (2016)

    CAS  Google Scholar 

  48. M. Watanabe, K. Sanui, N. Ogata, F. Inoue, T. Kobayashi, Z. Ohtaki, Temperature dependence of ionic conductivity of crosslinked poly (propylene oxide) films dissolving lithium salts and their interfacial charge transfer resistance in contact with lithium electrodes. Polym. J. 16(9), 711 (1984)

    CAS  Google Scholar 

  49. S. Ram, T. Mandal, Photoluminescence in small isotactic, atactic and syndiotactic pva polymer molecules in water. Chem. Phys. 303(1–2), 121–128 (2004)

    CAS  Google Scholar 

  50. S. Yuan, M. Tomonari, D. Matsuo, K. Mori, T. Uruga, H. Yamashita, Photoluminescence properties of ag 2 s semiconductor clusters synthesized in micropores and mesopores. Res. Chem. Intermed. 34(5–7), 519–524 (2008)

    CAS  Google Scholar 

  51. T.M. Hammad, A.M. Shallah, J.K. Salem, Optical properties of mg-and ni-doped ag 2 s colloidal nanoparticles. J. Korean Phys. Soc. 73(5), 616–621 (2018)

    CAS  Google Scholar 

Download references

Acknowledgments

Taif University and members of quantum optics research group (QORG) are thanked for logistic support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami S. Alharthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, S.S., Alzahrani, A., Razvi, M.A.N. et al. Spectroscopic and Electrical Properties of Ag2S/PVA Nanocomposite Films for Visible-Light Optoelectronic Devices. J Inorg Organomet Polym 30, 3878–3885 (2020). https://doi.org/10.1007/s10904-020-01519-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01519-4

Keywords

Navigation