Skip to main content
Log in

Epoxy Polyamide Composites Reinforced with Silica Nanorods: Fabrication, Thermal and Morphological Investigations

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Efficient improvement of the toughness of epoxy resin has been a bottleneck for growing their appropriateness for advanced application. In this study, thermoplastic polyamide and copolymer composites of thermosetting epoxy resins (DGEBA) were developed via the solution casting method. Polyamide acted as a part of the copolymer as well as a curing agent. Silica nanorods (SiO2 nanorods) were dispersed into the mixture to achieve blends of epoxy/polyamide reinforced silica nanocomposite with various weight ratio viz. 0 wt%, 1 wt%, 3 wt%, 5 wt%, 7 wt%, 9 wt% and 11 wt%. The as-prepared epoxy/polyamide reinforced SiO2 nanocomposites were examined by scanning surface micrograph (SEM), Fourier-transform infrared (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. The obtained results show that the modified epoxy/polyamides have better toughness than that of pristine epoxy/polyamide polymers. FTIR confirmed the interaction among SiO2 nanorods with epoxy/polyamide. The SEM analysis showed well dispersion of SiO2 nanorods in the epoxy/polyamide blend coating, which demonstrated that this method could effectively avoid agglomeration of the inorganic nanoparticles. In conclusion, this study provides an effective approach to harvest epoxy/polyamide/SiO2 nanocomposite from diverse methods and minerals materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Data Availability

All the data used to support the findings of this study are included within the article.

References

  1. K.F. El-Nemr, M.M. Khaffaga, S.N. Saleh, A. Wahab, M. El-Naggar, Mechanical and thermal properties of gamma-irradiated ethylene propylene diene monomer rubber/vermiculite clay/maleic anhydride composites. J. Vinyl Addit. Technol. 25, E3–11 (2019). https://doi.org/10.1002/vnl.21638

    Article  CAS  Google Scholar 

  2. S.A. Xu, G.T. Wang, Y.W. Mai, Effect of hybridization of liquid rubber and nanosilica particles on the morphology, mechanical properties, and fracture toughness of epoxy composites. J. Mater. Sci. 48(9), 3546–3556 (2013). https://doi.org/10.1007/s10853-013-7149-4

    Article  CAS  Google Scholar 

  3. L. Zhang, G. Zhang, L. Chang, B. Wetzel, B. Jim, Q. Wang, Distinct tribological mechanisms of silica nanoparticles in epoxy composites reinforced with carbon nanotubes, carbon fibers, and glass fibers. Tribol. Int. 104, 225–236 (2016). https://doi.org/10.1016/j.triboint.2016.09.001

    Article  CAS  Google Scholar 

  4. N. Saba, O.Y. Alothman, Z. Almutairi, M. Jawaid, Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: mechanical and thermomechanical properties. Constr. Build. Mater. 201, 138–148 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.182

    Article  CAS  Google Scholar 

  5. K.K. Mahato, K. Dutta, R.B. Chandra, Assessment of mechanical, thermal and morphological behavior of nano-Al2O3 embedded glass fiber/epoxy composites at in-situ elevated temperatures. Composites B 166, 688–700 (2019). https://doi.org/10.1016/j.compositesb.2019.03.009

    Article  CAS  Google Scholar 

  6. D. Matykiewicz, M. Barczewski, S. Michałowski, Basalt powder as an eco-friendly filler for epoxy composites: thermal and thermo-mechanical properties assessment. Composites B 164, 272–279 (2019). https://doi.org/10.1016/j.compositesb.2018.11.073

    Article  CAS  Google Scholar 

  7. I. Zembouai, M. Kaci, S. Bruzaud, A. Benhamida, Y.M. Corre, Y. Grohens, A study of morphological, thermal, rheological and barrier properties of poly(3-hydroxybutyrate-Co-3-hydroxyvalerate)/polylactide blends prepared by melt mixing. Polym. Test. 32(5), 842–851 (2013). https://doi.org/10.1016/j.polymertesting.2013.04.004

    Article  CAS  Google Scholar 

  8. M.H. Kothmann, A.R. de Anda, A. Köppel et al., The effect of dispersion and particle–matrix interactions on the fatigue behavior of novel epoxy/halloysite nanocomposites. Process Polym. Nanocompos. (2019). https://doi.org/10.3139/9781569906361.004

    Article  Google Scholar 

  9. M. Sahnoune, M. Kaci, A. Taguet et al., Tribological and mechanical properties of polyamide-11/halloysite nanotube nanocomposites. J. Polym. Eng. 39(1), 25–34 (2019). https://doi.org/10.1515/polyeng-2018-0131

    Article  CAS  Google Scholar 

  10. O. Okamba-Diogo, E. Richaud, J. Verdu, F. Fernagut, J. Guilment, B. Fayolle, Molecular and macromolecular structure changes in polyamide 11 during thermal oxidation: kinetic modeling. Polym. Degrad. Stab. 120, 76–87 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.06.005

    Article  CAS  Google Scholar 

  11. K. Prashantha, M.F. Lacrampe, P. Krawczak, Highly dispersed polyamide-11/halloysite nanocomposites: thermal, rheological, optical, dielectric, and mechanical properties. J. Appl. Polym. Sci. 130(1), 313–321 (2013). https://doi.org/10.1002/app.39160

    Article  CAS  Google Scholar 

  12. O. Okamba-Diogo, E. Richaud, J. Verdu, F. Fernagut, J. Guilment, B. Fayolle, Investigation of polyamide 11 embrittlement during oxidative degradation. Polymer 82, 49–56 (2016). https://doi.org/10.1016/j.polymer.2015.11.025

    Article  CAS  Google Scholar 

  13. D.M. Constantinescu, D.A. Apostol, C.R. Picu, K. Krawczyk, M. Sieberer, Mechanical properties of epoxy nanocomposites reinforced with functionalized silica nanoparticles. Proc. Struct. Integr. 5, 647–652 (2017). https://doi.org/10.1016/j.prostr.2017.07.034

    Article  Google Scholar 

  14. N.R. Paluvai, S. Mohanty, S.K. Nayak, Synthesis and modifications of epoxy resins and their composites: a review. Polym. Plast. Technol. Eng. 53(16), 1723–1758 (2014). https://doi.org/10.1080/03602559.2014.919658

    Article  CAS  Google Scholar 

  15. H. Gu, J. Guo, Q. He et al., Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind. Eng. Chem. Res. 52(23), 7718–7728 (2013). https://doi.org/10.1021/ie400275n

    Article  CAS  Google Scholar 

  16. S. Morlat-Therias, B. Mailhot, D. Gonzalez, J.L. Gardette, Photooxidation of polypropylene/montmorillonite nanocomposites 2 Interactions with antioxidants. Chem. Mater. 17(5), 1072–1078 (2005). https://doi.org/10.1021/cm040172l

    Article  CAS  Google Scholar 

  17. S. Zeng, M. Shen, Y. Xue et al., Controllable mechanical properties of epoxy composites by incorporating self-assembled carbon nanotube–montmorillonite. Composites B 164, 368–376 (2019). https://doi.org/10.1016/j.compositesb.2018.12.028

    Article  CAS  Google Scholar 

  18. W. Wang, A. Wang, Vermiculite Nanomaterials: Structure, Properties, and Potential Applications (Elsevier, New York, 2019)

    Google Scholar 

  19. M. Tomić, B. Dunjić, M.S. Nikolić et al., Polyamidoamine as a clay modifier and curing agent in preparation of epoxy nanocomposites. Prog. Org. Coat. 131, 311–321 (2019). https://doi.org/10.1016/j.porgcoat.2019.02.037

    Article  CAS  Google Scholar 

  20. N.P. Singh, V.K. Gupta, A.P. Singh, Graphene and carbon nanotube reinforced epoxy nanocomposites: a review. Polymer 180, 121724 (2019). https://doi.org/10.1016/j.polymer.2019.121724

    Article  CAS  Google Scholar 

  21. A.J. Kinloch, A.C. Taylor, M. Techapaitoon, W.S. Teo, S. Sprenger, From matrix nano- And micro-phase tougheners to composite macro-properties. Philos. Trans. R. Soc. A (2016). https://doi.org/10.1098/rsta.2015.0275

    Article  Google Scholar 

  22. K.V.P. Chakradhar, K.V. Subbaiah, M.A. Kumar, G.R. Reddy, Blended epoxy/polyester polymer nanocomposites: effect of “nano” on mechanical properties. Polym. Plast. Technol. Eng. 51(1), 92–96 (2012). https://doi.org/10.1080/03602559.2011.618157

    Article  CAS  Google Scholar 

  23. A. Afzal, H.M. Siddiqi, A comprehensive study of the bicontinuous epoxy-silica hybrid polymers: I Synthesis, characterization and glass transition. Polymer 52(6), 1345–1355 (2011). https://doi.org/10.1016/j.polymer.2011.01.046

    Article  CAS  Google Scholar 

  24. Y.T. Lin, T.M. Don, C.J. Wong et al., Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyaniline/graphene composite. Surf. Coat. Technol. 374, 1128–1138 (2019). https://doi.org/10.1016/j.surfcoat.2018.01.050

    Article  CAS  Google Scholar 

  25. J. Tarrío-Saavedra, J. López-Beceiro, S. Naya, R. Artiaga, Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym. Degrad. Stab. 93(12), 2133–2137 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.08.006

    Article  CAS  Google Scholar 

  26. H. Lu, H. Shen, Z. Song, K.S. Shing, W. Tao, S. Nutt, Rod-like silicate-epoxy nanocomposites. Macromol. Rapid Commun. 26(18), 1445–1450 (2005). https://doi.org/10.1002/marc.200500360

    Article  CAS  Google Scholar 

  27. J. Brus, M. Špírková, D. Hlavatá, A. Strachota, Self-organization, structure, dynamic properties, and surface morphology of silica/epoxy films as seen by solid-state NMR, SAXS, and AFM. Macromolecules 37(4), 1346–1357 (2004). https://doi.org/10.1021/ma035608h

    Article  CAS  Google Scholar 

  28. T.T. Wang, P. Huang, Y.Q. Li, N. Hu, S.Y. Fu, Epoxy nanocomposites significantly toughened by both poly(sulfone) and graphene oxide. Compos. Commun. 14(March), 55–60 (2019). https://doi.org/10.1016/j.coco.2019.05.007

    Article  Google Scholar 

  29. Z. Sun, L. Xu, Z. Chen et al., Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone. Polymers (Basel). (2019). https://doi.org/10.3390/polym11030461

    Article  PubMed  PubMed Central  Google Scholar 

  30. W. Wang, W. Dong, G. Tian et al., Highly efficient self-template synthesis of porous silica nanorods from natural palygorskite. Powder Technol. 354, 1–10 (2019). https://doi.org/10.1016/j.powtec.2019.05.075

    Article  CAS  Google Scholar 

  31. K.G. Lee, R. Wi, M. Imran et al., Functionalization effects of single-walled carbon nanotubes as templates for the synthesis of silica nanorods and study of growing mechanism of silica. ACS Nano 4(7), 3933–3942 (2010). https://doi.org/10.1021/nn100807r

    Article  PubMed  CAS  Google Scholar 

  32. R. Velmurugan, T.P. Mohan, Room temperature processing of epoxy-clay nanocomposites. J. Mater. Sci. 39(24), 7333–7339 (2004). https://doi.org/10.1023/B:JMSC.0000048748.35490.9f

    Article  CAS  Google Scholar 

  33. S. Mehmood, N. Ali, F. Ali, F. Haq, M. Haroon, S. Fahad, The influence of surface modified silica nanoparticles on the properties of epoxy nanocomposites. J. Zeitsch. Phys. Chem. (2020). https://doi.org/10.1515/zpch-2019-1544

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Farman Ali is highly obliged to the Higher Education Commission (HEC) of Pakistan for supporting this work through the NRPU Project (No. 5723/KPK/NRPU/R&D/HEC/2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nisar Ali or Muhammad Bilal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F., Ali, N., Altaf, M. et al. Epoxy Polyamide Composites Reinforced with Silica Nanorods: Fabrication, Thermal and Morphological Investigations. J Inorg Organomet Polym 30, 3869–3877 (2020). https://doi.org/10.1007/s10904-020-01518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01518-5

Keywords

Navigation