Skip to main content
Log in

Removal of Pb2+ Ions onto Magnetic Graphene/Nylon 6: Optimized by Taguchi Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A novel sorbent consisting of graphene, Fe3O4 and nylon-6 is described for removal of Pb2+ ions. Graphene has high surface area, Fe3O4 lets the nanocomposite to be controllable via magnetic field and nylon-6 increases active negative sites. Accordingly, the nanocomposite can be a good candidate to be a magnetic sorbent. Graphene oxide was prepared via modified Hummer’s method and magnetized by precipitation of Fe3O4. The modification of magnetic nanocomposite was done through dispersion of the composite in solution of nylon-6. X-ray diffraction, scanning electron microscopy, electron diffraction spectroscopy and Fourier-transform infrared spectroscopy were used to characterize the nanocomposite. The optimum adsorption conditions were achieved through Taguchi method, which decreased the optimization time and usage amount of mGN6. Regarding to the data, pH of 9, sorbent amount of 10 mg and Pb2+ concentration of 6 mg L−1 were optimum conditions. The actual value from optimized level condition was 97%. In comparison with other sorbents used for Pb2+ removal and determination with FAAS, mGN6 has serious improvements including more capacity adsorption and less usage amount of sorbent. The co-existing ions effect was examined. The Freundlich model and the pseudo second-order model confirmed isotherm adsorption and kinetic adsorption behaviors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Setoodehkhah, S. Momeni, Water soluble Schiff Base functionalized Fe3O4 magnetic nano-particles as a novel adsorbent for the removal of Pb(II) and Cu(II) metal ions from aqueous solutions. J. Inorg. Organomet. Polym. Mater. 28(3), 1098–1106 (2018)

    Article  CAS  Google Scholar 

  2. E.A. Abdelrahman, R. Hegazey, A. Alharbi, Facile synthesis of mordenite nanoparticles for efficient removal of Pb(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01238-5

    Article  Google Scholar 

  3. N.C. Joshi, N. Malik, A. Singh, Synthesis and characterizations of polythiophene–Al2O3 based nanosorbent and its applications in the removal of Pb2+, Cd2+ and Zn2+ ions. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01252-7

    Article  Google Scholar 

  4. M. Mahdavi, M.B. Ahmad, M.J. Haron, Y. Gharayebi, K. Shameli, B. Nadi, Fabrication and characterization of SiO2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead(II) removal from aqueous solution. J. Inorg. Organomet. Polym. Mater. 23(3), 599–607 (2013)

    Article  CAS  Google Scholar 

  5. R. Zhang, Y. Li, X. Zhu, Q. Han, T. Zhang, Y. Liu, K. Zeng, C. Zhao, Application of β-cyclodextrin-modified/PVDF blend magnetic membranes for direct metal ions removal from wastewater. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01416-5

    Article  Google Scholar 

  6. A.W. Trochimczuk, J. Jezierska, Modification of malonamide ion-exchange/chelating resins using the fields—Kabatschnik reaction and their application to metal ion removal from aqueous solutions. J. Inorg. Organomet. Polym. Mater. 10(2), 81–91 (2000)

    Article  CAS  Google Scholar 

  7. M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of lead from lead battery recycling plant wastewater. Ind. Eng. Chem. Res. 41(6), 1579–1582 (2002)

    Article  CAS  Google Scholar 

  8. C.M. Navarathna, N.B. Dewage, A.G. Karunanayake, E.L. Farmer, F. Perez, T.E. Mlsna, C.U. Pittman, Rhodamine B adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites. J. Inorg. Organomet. Polym. Mater. 30(1), 214–229 (2020)

    Article  CAS  Google Scholar 

  9. P. Jamshidi, M. Alvand, F. Shemirani, Magnetic Mn2O3 nanocomposite covered with N, N′-bis (salicylidene) ethylenediamine for selective preconcentration of cadmium(II) prior to its quantification by FAAS. Microchim. Acta 186(8), 487–496 (2019)

    Article  Google Scholar 

  10. D. Gaber, M.A. Haija, A. Eskhan, F. Banat, Graphene as an efficient and reusable adsorbent compared to activated carbons for the removal of phenol from aqueous solutions. Water Air Soil Pollut. 228(9), 320–334 (2017)

    Article  Google Scholar 

  11. F.F. Qi, Y. Cao, M. Wang, F. Rong, Q. Xu, Nylon 6 electrospun nanofibers mat as effective sorbent for the removal of estrogens: kinetic and thermodynamic studies. Nanoscale Res. Lett. 9(1), 353–363 (2014)

    Article  Google Scholar 

  12. A.H. Bademlioglu, A.S. Canbolat, O. Kaynakli, Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis. Renew. Sustain. Energy Rev. 117, 109483–109496 (2020)

    Article  CAS  Google Scholar 

  13. B. Maazinejad, O. Mohammadnia, G.A.M. Ali, A.S.H. Makhlouf, M.N. Nadagouda, M. Sillanpää, A.M. Asiri, S. Agarwal, V.K. Gupta, H. Sadegh, Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J. Mol. Liq. 298, 112001 (2020)

    Article  CAS  Google Scholar 

  14. M. Eskandarpour, P. Jamshidi, M.R. Moghaddam, J.B. Ghasmei, F. Shemirani, A highly selective magnetic solid-phase extraction method for preconcentration of Cd(II) using N, N′-bis (salicylidene) ethylenediamine in water and food samples. Res. Chem. Intermed. 45(5), 3141–3153 (2019)

    Article  CAS  Google Scholar 

  15. M. Alvand, F. Shemirani, Fabrication of Fe3O4@graphene oxide core–shell nanospheres for ferrofluid-based dispersive solid phase extraction as exemplified for Cd(II) as a model analyte. Microchim. Acta 183(5), 1749–1757 (2016)

    Article  CAS  Google Scholar 

  16. M. Eskandarpour, P. Jamshidi, M.R. Moghaddam, J.B. Ghasmei, F. Shemirani, Developing a highly selective method for preconcentration and determination of cobalt in water and nut samples using 1-(2-pyridylazo)-2-naphthol and UV–vis spectroscopy. J. Sci. Food Agric. (2020). https://doi.org/10.1002/jsfa.10257

    Article  PubMed  Google Scholar 

  17. M. Saraji, A. Keykavooci, Octadecylsilane/Nylon-6 composite as a thin-film microextraction sorbent for the determination of bisphenol A in water samples. J. Sep. Sci. 39(18), 3616–3623 (2016)

    Article  CAS  Google Scholar 

  18. P.P.A. Jose, M. Kala, N. Kalarikkal, S. Thomas, Reduced graphene oxide produced by chemical and hydrothermal methods. Mater. Today 5(8), 16306–16312 (2018)

    CAS  Google Scholar 

  19. L. Zhang, Y. Li, H. Guo, H. Zhang, N. Zhang, T. Hayat, Y. Sun, Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques. Environ. Pollut. 248, 332–338 (2019)

    Article  CAS  Google Scholar 

  20. E. Reyes-Gallardo, R. Lucena, S. Cárdenas, Silica nanoparticles–nylon 6 composites: synthesis, characterization and potential use as sorbent. RSC Adv. 7(4), 2308–2314 (2017)

    Article  CAS  Google Scholar 

  21. M. Shahidzadeh, P. Shabihi, S.M. Pourmortazavi, Sonochemical preparation of copper(II) chromite nanocatalysts and particle size optimization via Taguchi method. J. Inorg. Organomet. Polym. Mater. 25(4), 986–994 (2015)

    Article  CAS  Google Scholar 

  22. M. Barakat, R. Kumar, Synthesis and characterization of porous magnetic silica composite for the removal of heavy metals from aqueous solution. J. Ind. Eng. Chem. 23, 93–99 (2015)

    Article  CAS  Google Scholar 

  23. Z. Shang, L. Zhang, X. Zhao, S. Liu, D. Li, Removal of Pb(II), Cd(II) and Hg(II) from aqueous solution by mercapto-modified coal gangue. J. Environ. Manag. 231, 391–396 (2019)

    Article  CAS  Google Scholar 

  24. C. Zou, W. Jiang, J. Liang, X. Sun, Y. Guan, Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite. Environ. Sci. Pollut. Res. 26(2), 1315–1322 (2019)

    Article  CAS  Google Scholar 

  25. P. Jamshidi, F. Shemirani, Synthesis of a magnetic WO3 nanocomposite for use in highly selective preconcentration of Pb(II) prior to its quantification by FAAS. Microchim. Acta 185(9), 421–430 (2018)

    Article  Google Scholar 

  26. P. Jamshidi, F. Shemirani, Adsorption and desorption of Pb2+ on magnetic Mn2O3 as highly efficient adsorbent: isotherm, kinetic and thermodynamic studies. Colloids Surf. A 571, 151–159 (2019)

    Article  CAS  Google Scholar 

  27. E. Ghiasi, A. Malekzadeh, Removal of various textile dyes using LaMn(Fe)O3 and LaFeMn0.5O3 nanoperovskites; RSM optimization, isotherms and kinetics studies. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-019-01438-z

    Article  Google Scholar 

  28. A. Olad, M. Bastanian, H.B.K. Hagh, Thermodynamic and kinetic studies of removal process of hexavalent chromium ions from water by using bio-conducting starch–montmorillonite/polyaniline nanocomposite. J. Inorg. Organomet. Polym. Mater. 29(6), 1916–1926 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Davallo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirnezami, S.Y., Davallo, M., Sohrabi, M. et al. Removal of Pb2+ Ions onto Magnetic Graphene/Nylon 6: Optimized by Taguchi Method. J Inorg Organomet Polym 30, 3531–3539 (2020). https://doi.org/10.1007/s10904-020-01498-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01498-6

Keywords

Navigation