Skip to main content
Log in

Rhodamine B Adsorptive Removal and Photocatalytic Degradation on MIL-53-Fe MOF/Magnetic Magnetite/Biochar Composites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl3 into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe3O4 (MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocatalytic and degradative, adsorbent (MOF–MBC) was used both to remove and catalyze the photodegradation of Rhodamine B (Rh B) with or without Cr6+ present. Rh B is a widely used colorant in textile, printing and tanning industries that is also associated with deleterious health effects. Batch aqueous sorption studies were performed at various pHs, Rh B concentrations and temperatures in-order to determine the optimum adsorption pH, kinetics, thermodynamics and sorption capacity. This adsorption followed pseudo-2nd-order kinetics and exhibited a Rh B Langmuir adsorption capacity of ~ 55 mg/g at pH 6, 200 rpm agitation and 25 °C. This MOF–MBC hybrid was characterized by SEM, TEM, EDS, XRD, FT-IR, TGA, BET, Elemental Analysis and XPS. Deethylated and carboxylic compounds were identified as photodegradation intermediates. Electrostatic and π–π stacking interactions are thought to play a significant role in Rh B sorption. Hexavalent chromium (Cr6+) and Rh B often co-exist in tannery and printing waste water. Cr6+ can trigger the photo-degradation of Rh B into CO2 and H2O in the presence of both MIL-53-Fe MOF and MOF–MBC. Hence, adsorbent stripping regeneration can be minimized in real world applications. The biochar phase, aids to disperse the MOF, to minimize particle aggregation, to provide extra stability to the MOF, and serves as secondary adsorption site for heavy metal, oxy anion and organic contaminants. Large biochar particles allow reasonable flow through column beds while supporting other nanophases, which would cause large pressure drops when used alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. Novotny, Water quality: Prevention, Identification and Management of Diffuse Pollution (Van Nostrand-Reinhold Publishers, New York, 1994)

    Google Scholar 

  2. P. Grau, Textile industry wastewaters treatment. Water Sci. Technol. 24, 97–103 (1991)

    CAS  Google Scholar 

  3. O.M. Yaghi, M. O’keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423, 705 (2003)

    CAS  Google Scholar 

  4. H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks (ACS Publications, Washington, 2012)

    Google Scholar 

  5. C.G. Silva, A. Corma, H. García, Metal–organic frameworks as semiconductors. J. Mater. Chem. 20, 3141–3156 (2010)

    CAS  Google Scholar 

  6. L. Cui, X. Meng, Y. Fan, X. Li, C. Bi, Synthesis, crystal structures, photocatalysis for rhodamine B degradation of a organobismuth(V) dithiocarbamate polymer [PhBiS2CN(C2H5)2Cl] n. J. Inorg. Organomet. Polym Mater. 25, 1490–1494 (2015)

    CAS  Google Scholar 

  7. Y. Wu, J. Feng, B. Xie, L. Zou, Y. Li, Z. Li, An extremely stable 2D Zinc(II) coordination polymer exhibiting high sensing ability and photocatalytic degradation activities of dyes. J. Inorg. Organomet. Polym Mater. 27, 1243–1251 (2017)

    CAS  Google Scholar 

  8. L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Highly dispersed palladium nanoparticles anchored on UiO-66 (NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 5, 9374–9382 (2013)

    CAS  PubMed  Google Scholar 

  9. A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Catalysis by metal–organic frameworks in water. Chem. Commun. 50, 12800–12814 (2014)

    Google Scholar 

  10. K. Tan, N. Nijem, Y. Gao, S. Zuluaga, J. Li, T. Thonhauser, Y.J. Chabal, Water interactions in metal organic frameworks. CrystEngComm 17, 247–260 (2015)

    CAS  Google Scholar 

  11. H. Ramezanalizadeh, F. Manteghi, Synthesis of a novel MOF/CuWO4 heterostructure for efficient photocatalytic degradation and removal of water pollutants. J. Cleaner Prod. 172, 2655–2666 (2018)

    CAS  Google Scholar 

  12. J. Zhao, D.T. Lee, R.W. Yaga, M.G. Hall, H.F. Barton, I.R. Woodward, C.J. Oldham, H.J. Walls, G.W. Peterson, G.N. Parsons, Ultra-fast degradation of chemical warfare agents using MOF–nanofiber kebabs. Angew. Chem. Int. Ed. 55, 13224–13228 (2016)

    CAS  Google Scholar 

  13. F. Wang, X. He, L. Sun, J. Chen, X. Wang, J. Xu, X. Han, Engineering an N-doped TiO2@ N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidation. J. Mater. Chem. A 6, 2091–2099 (2018)

    CAS  Google Scholar 

  14. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B. 49, 1–14 (2004)

    CAS  Google Scholar 

  15. C.J. Ennis, A.G. Evans, M. Islam, T.K. Ralebitso-Senior, E. Senior, Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit. Rev. Environ. Sci. Technol. 42, 2311–2364 (2012)

    CAS  Google Scholar 

  16. C. Peiris, O. Nayanathara, C.M. Navarathna, Y. Jayawardhana, S. Nawalage, G. Burk, A.G. Karunanayake, S.B. Madduri, M. Vithanage, M. Kaumal, The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative study. RSC Adv. 9, 17612–17622 (2019)

    Google Scholar 

  17. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour. Technol. 160, 191–202 (2014)

    CAS  PubMed  Google Scholar 

  18. Y. Jayawardhana, S.R. Gunatilake, K. Mahatantila, M.P. Ginige, M. Vithanage, Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds. J. Environ. Manage. 238, 323–330 (2019)

    CAS  PubMed  Google Scholar 

  19. C. Peiris, S.R. Gunatilake, T.E. Mlsna, D. Mohan, M. Vithanage, Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Biores. Technol. 246, 150–159 (2017)

    CAS  Google Scholar 

  20. D. Mohan, K. Abhishek, A. Sarswat, M. Patel, P. Singh, C.U. Pittman Jr., Biochar production and applications in soil fertility and carbon sequestration—a sustainable solution to crop-residue burning in India. RSC Adv. 8, 508–520 (2018)

    CAS  Google Scholar 

  21. J. Lehmann, S. Joseph, Biochar for Environmental Management: Science, Technology and Implementation (Routledge, London, 2015)

    Google Scholar 

  22. A.G. Karunanayake, O.A. Todd, M. Crowley, L. Ricchetti, C.U. Pittman Jr., R. Anderson, D. Mohan, T. Mlsna, Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chem. Eng. J. 331, 480–491 (2018)

    CAS  Google Scholar 

  23. A.G. Karunanayake, O.A. Todd, M.L. Crowley, L.B. Ricchetti, C.U. Pittman Jr., R. Anderson, T.E. Mlsna, Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir. Chem. Eng. J. 319, 75–88 (2017)

    CAS  Google Scholar 

  24. A.G. Karunanayake, N. Bombuwala Dewage, O.A. Todd, M. Essandoh, R. Anderson, T. Mlsna, D. Mlsna, Salicylic acid and 4-nitroaniline removal from water using magnetic biochar: an environmental and analytical experiment for the undergraduate laboratory. J. Chem. Educ. 93, 1935–1938 (2016)

    CAS  Google Scholar 

  25. N.B. Dewage, A.S. Liyanage, Q. Smith, C.U. Pittman Jr., F. Perez, D. Mohan, T. Mlsna, Fast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biochar. Chemosphere 225, 943–953 (2019)

    Google Scholar 

  26. N.B. Dewage, A.S. Liyanage, C.U. Pittman Jr., D. Mohan, T. Mlsna, Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresour. Technol. 263, 258–265 (2018)

    Google Scholar 

  27. N.B. Dewage, R.E. Fowler, C.U. Pittman Jr., D. Mohan, T. Mlsna, Lead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies. RSC Adv. 8, 25368–25377 (2018)

    Google Scholar 

  28. X.-F. Tan, Y.-G. Liu, Y.-L. Gu, Y. Xu, G.-M. Zeng, X.-J. Hu, S.-B. Liu, X. Wang, S.-M. Liu, J. Li, Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour. Technol. 212, 318–333 (2016)

    CAS  PubMed  Google Scholar 

  29. A.G. Karunanayake, C. Navarathna, S. Gunatilake, M. Crowley, R. Anderson, D. Mohan, F. Perez, C.U. Pittman Jr., T.E. Mlsna, Fe3O4 nanoparticles dispersed on Douglas fir biochar for phosphate sorption. ACS Appl. Nano Mater. 2, 3467–3479 (2019)

    CAS  Google Scholar 

  30. T.A. Khan, M. Nazir, E.A. Khan, Adsorptive removal of rhodamine B from textile wastewater using water chestnut (Trapa natans L.) peel: adsorption dynamics and kinetic studies. Toxicol. Environ. Chem. 95, 919–931 (2013)

    CAS  Google Scholar 

  31. V. Gupta, Suhas, I. Ali, V. Saini, Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res. 43, 1740–1747 (2004)

    CAS  Google Scholar 

  32. R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, MIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J. Hazard. Mater. 287, 364–372 (2015)

    CAS  PubMed  Google Scholar 

  33. N. Guillou, R.I. Walton, F. Millange, MIL-53 (Fe): a good example to illustrate the power of powder diffraction in the field of MOFs. Zeitschrift für Kristallographie Crystall. Mater. 225, 552–556 (2010)

    CAS  Google Scholar 

  34. A.K. Cheetham, T.D. Bennett, F.-X. Coudert, A.L. Goodwin, Defects and disorder in metal organic frameworks. Dalton Trans. 45, 4113–4126 (2016)

    CAS  PubMed  Google Scholar 

  35. W. Xiong, G. Zeng, Z. Yang, Y. Zhou, C. Zhang, M. Cheng, Y. Liu, L. Hu, J. Wan, C. Zhou, Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent. Sci. Total Environ. 627, 235–244 (2018)

    CAS  PubMed  Google Scholar 

  36. A. Downie, A. Crosky, P. Munroe, Physical properties of biochar. Biochar for environmental management. Sci. Technol. 13, 32 (2009)

    Google Scholar 

  37. N. Liu, C. Jing, Z. Li, W. Huang, B. Gao, F. You, X. Zhang, Effect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53 (Fe). Mater. Lett. 237, 92–95 (2019)

    CAS  Google Scholar 

  38. D. Angın, S. Şensöz, Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Int. J. Phytorem. 16, 684–693 (2014)

    Google Scholar 

  39. M.K. Misra, K.W. Ragland, A.J. Baker, Wood ash composition as a function of furnace temperature. Biomass Bioenerg. 4, 103–116 (1993)

    CAS  Google Scholar 

  40. K.C. Kim, T.-U. Yoon, Y.-S. Bae, Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials. Microporous Mesoporous Mater. 224, 294–301 (2016)

    CAS  Google Scholar 

  41. A. Schoth, A.D. Keith, K. Landfester, R. Muñoz-Espí, Silanization as a versatile functionalization method for the synthesis of polymer/magnetite hybrid nanoparticles with controlled structure. RSC Adv. 6, 53903–53911 (2016)

    CAS  Google Scholar 

  42. M.A. Ghasemzadeh, B. Mirhosseini-Eshkevari, M.H. Abdollahi-Basir, MIL-53 (Fe) metal–organic frameworks (MOFs) as an efficient and reusable catalyst for the one-pot four-component synthesis of pyrano [2, 3-c]-pyrazoles. Appl. Organomet. Chem. 33, e4679 (2019)

    Google Scholar 

  43. A. Grosvenor, B. Kobe, M. Biesinger, N. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574 (2004)

    CAS  Google Scholar 

  44. T.A. Saleh, V.K. Gupta, Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci. 362, 337–344 (2011)

    CAS  PubMed  Google Scholar 

  45. R. Liang, L. Shen, F. Jing, N. Qin, L. Wu, Preparation of MIL-53 (Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalysts. ACS Appl. Mater. Interfaces. 7, 9507–9515 (2015)

    CAS  PubMed  Google Scholar 

  46. Q. Qi, W. Chi, Y. Li, Q. Qiao, J. Chen, L. Miao, Y. Zhang, J. Li, W. Ji, T. Xu, A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy. Chem. Sci. 10, 4914–4922 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    CAS  Google Scholar 

  48. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    CAS  Google Scholar 

  49. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)

    CAS  Google Scholar 

  50. G. Ren, X. Wang, P. Huang, B. Zhong, Z. Zhang, L. Yang, X. Yang, Chromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction method. Sci. Total Environ. 607, 900–910 (2017)

    PubMed  Google Scholar 

  51. J. Anandkumar, B. Mandal, Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. J. Hazard. Mater. 186, 1088–1096 (2011)

    CAS  PubMed  Google Scholar 

  52. X. Lin, F. Zhang, S. Pan, H. Yu, F. Zhang, X. Dong, S. Han, L. Dong, C. Bai, Z. Wang, Ba4(BO3)3(SiO4)·Ba3X (X = Cl, Br): new salt-inclusion borosilicate halides as potential deep UV nonlinear optical materials. J. Mater. Chem. C 2, 4257–4264 (2014)

    CAS  Google Scholar 

  53. I. Velo-Gala, J. López-Peñalver, M. Sánchez-Polo, J. Rivera-Utrilla, Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal. B. 142, 694–704 (2013)

    Google Scholar 

  54. L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Multifunctional NH 2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans. 42, 13649–13657 (2013)

    CAS  PubMed  Google Scholar 

  55. R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Appl. Catal. B 162, 245–251 (2015)

    CAS  Google Scholar 

  56. J. Zhang, H. Yan, Y. Chen, R. Chen, Y. He, W. Liu, Efficient degradation of aqueous Rhodamine B irradiation under indoor light using a SiO2–Hypocrellin B complex. Photochem. Photobiol. 92, 644–648 (2016)

    CAS  PubMed  Google Scholar 

  57. Z.-H. Diao, J.-J. Liu, Y.-X. Hu, L.-J. Kong, D. Jiang, X.-R. Xu, Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: reactivity, stability, products and mechanism. Sep. Purif. Technol. 184, 374–383 (2017)

    CAS  Google Scholar 

  58. A.A. Al-Kahtani, Photocatalytic degradation of rhodamine B dye in wastewater using gelatin/cus/PVA nanocomposites under solar light irradiation. J. Biomater. Nanobiotechnol. 8, 66–82 (2017)

    CAS  Google Scholar 

  59. K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J. Phys. Chem. A 113, 10024–10032 (2009)

    CAS  PubMed  Google Scholar 

  60. H. Liu, X. Ren, L. Chen, Synthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solution. J. Ind. Eng. Chem. 34, 278–285 (2016)

    CAS  Google Scholar 

  61. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manage. 85, 956–964 (2007)

    CAS  PubMed  Google Scholar 

  62. C. Zhang, L. Ai, J. Jiang, Solvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J. Mater. Chem. A 3, 3074–3081 (2015)

    CAS  Google Scholar 

  63. F.H. AlHamedi, M. Rauf, S.S. Ashraf, Degradation studies of Rhodamine B in the presence of UV/H2O2. Desalination 239, 159–166 (2009)

    CAS  Google Scholar 

  64. C.M. Navarathna, A.G. Karunanayake, S.R. Gunatilake, C.U. Pittman Jr., F. Ferez, D. Mohan, T. Mlsna, Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. J. Environ. Manage. 250, 109429 (2019)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1659830.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Todd E. Mlsna or Charles U. Pittman Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarathna, C.M., Dewage, N.B., Karunanayake, A.G. et al. Rhodamine B Adsorptive Removal and Photocatalytic Degradation on MIL-53-Fe MOF/Magnetic Magnetite/Biochar Composites. J Inorg Organomet Polym 30, 214–229 (2020). https://doi.org/10.1007/s10904-019-01322-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01322-w

Keywords

Navigation