Skip to main content
Log in

Synthesis and Characterization of Core–Shell NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 Nanoferrites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two magnetic nanocomposites were prepared from spinel ferrite magnetic nanoparticles NiFe2O4 (NF) and ZnFe2O4 (ZF) with MgFe2O4 (MF) using citrate precursor method. The X-ray diffraction confirmed that the structure of all the samples was a single phase of spinel ferrites with space group Fd-3m. The determined lattice parameter (a) is within the expected values of MF, NF, and ZF. The grain size of all the nanocomposites obtained from the high resolution transmission electron microscope images showed that all the samples are in the nanoscale. The vibrating sample magnetometer was used to investigate the magnetic properties. An unexpected value of saturation magnetization (MS) was obtained for both NF@MF and ZF@MF where NF@MF is less than NF and ZF@MF is higher than of ZF. Self-heating characteristics under an alternating current magnetic field of 9.27 km−1 and a frequency of 198 kHz were investigated for hyperthermia applications. The results show an upward trend for the samples in the temperature vs. time chart, as a result of increasing in MS of the samples where the NF@MF has the highest values of SAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, Formation of magnetic nanoparticles by low energy dual implantation of Ni and Fe into SiO2. J. Alloys. Compd. 667, 255–261 (2016). https://doi.org/10.1016/j.jallcom.2016.01.172

    Article  CAS  Google Scholar 

  2. G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Magn. Magn. Mater. 460, 229–233 (2018). https://doi.org/10.1016/j.jmmm.2018.04.017

    Article  CAS  Google Scholar 

  3. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, High spin-dependent tunneling magnetoresistance in magnetite powders made by arcdischarge. J. Appl. Phys. 120(12), 123905 (2016). https://doi.org/10.1063/1.4963293

    Article  CAS  Google Scholar 

  4. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, A. Ferrelectric, Ferromagnetic composite material with significant permeability and permittivity. Adv. Funct. Mater. 14, 920–926 (2004)

    Article  CAS  Google Scholar 

  5. J. Ma, J. Hu, Z. Li, C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011)

    Article  CAS  Google Scholar 

  6. M. Ansari, A. Bigham, S.A. Hassanzadeh-Tabrizi, H. Abbastabar Ahangar, Synthesis and characterization of Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a magnetic drug delivery system. J. Magn. Magn. Mater. 439, 67–75 (2017)

    Article  CAS  Google Scholar 

  7. F. Foroughi, S.A. Hassanzadeh-Tabrizi, A. Bigham, In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system. Mater. Sci. Eng. C 68, 774–779 (2016)

    Article  CAS  Google Scholar 

  8. A. Farzin, M. Fathi, R. Emadi, Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications. Mater. Sci. Eng. C 70, 21–31 (2017)

    Article  CAS  Google Scholar 

  9. C. Wu, W. Fan, Y. Zhu et al., Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomater. 7, 3563–3572 (2011)

    Article  CAS  Google Scholar 

  10. M. Latorre-Esteves, A. Cortes, M. Torres-Lugo, C. Rinaldi, Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications. J. Magn. Magn. Mater. 321, 3061–3066 (2009)

    Article  CAS  Google Scholar 

  11. N. Sanpo, C. Wen, C.C. Berndt, J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 9, 5830–5837 (2013)

    Article  CAS  Google Scholar 

  12. M. Bañobre-López, Y. Piñeiro-Redondo, M. Sandri et al., Hyperthermia induced in magnetic scaffolds for bone tissue engineering. IEEE Trans. Magn. 50, 1–7 (2014)

    Article  Google Scholar 

  13. E. Natividad, M. Castro, A. Mediano, Adiabatic vs non-adiabatic determination of specific absorption rate of ferrofluids. J. Magn. Magn. Mater. 321(10), 1497–1500 (2009)

    Article  CAS  Google Scholar 

  14. S. Dutz, R. Hergt, Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumor therapy. Int. J. Hyperth. 29(8), 790–800 (2013)

    Article  Google Scholar 

  15. N.M. Deraz, A. Alarifi, S.A. Shaban, Removal of sulfur from commercial kerosene using nanocrystalline NiFe2O4 based sorbents. J. Saudi Chem. Soc. 14, 357 (2010)

    Article  CAS  Google Scholar 

  16. A. Goldman, Handbook of Modern Ferromagnetic Materials (Kluwer Academic Publishers, Boston, 1999)

    Book  Google Scholar 

  17. C.N. Anumol, M. Chithra, M. Govindaraj Shalini, S.C. Sahoo, Effect of annealing on structural and magnetic properties of NiFe2O4/ZnFe2O4 nanocomposites. J. Magn. Magn. Mater. 469, 81–88 (2019). https://doi.org/10.1016/j.jmmm.2018.08.036

    Article  CAS  Google Scholar 

  18. M. Bohra, S. Prasad, N. Venkataramani, S.C. Sahoo, N. Kumar, R. Krishnan, Low temperature magnetization studies of nanocrystalline Zn-ferrite thin films. IEEE Trans. Magn. 49, 4249 (2013). https://doi.org/10.1109/TMAG.2013.2239969

    Article  CAS  Google Scholar 

  19. H.M. El-Sayed, I.A. Ali, A. Azzam, A.A. Sattar, Influence of the magnetic dead layer thickness of Mg-Zn ferrites nanoparticle on their magnetic properties. J. Magn. Magn. Mater. 424, 226–232 (2017)

    Article  CAS  Google Scholar 

  20. J.P. Singh, S.O. Won, W.C. Lim, I.-J. Lee, K.H. Chae, Electronic structure studies of chemically synthesized MgFe2O4 nanoparticles. J. Mol. Struct. 1108, 444–450 (2016)

    Article  CAS  Google Scholar 

  21. M.D. Rahaman, T. Nusrat, R. Maleque, A.K.M. Akther Hossain, Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5-xSrxFe2O4 ferrites. J. Magn. Magn. Mater. 451, 391–406 (2018)

    Article  CAS  Google Scholar 

  22. O. Masala, D. Hoffman, N. Sundaram, K. Page, T. Proffen, G. Lawes, R. Seshadri, Preparation of magnetic spinel ferrite core/shell nanoparticles: soft ferrites on hard ferrites and vice versa. Solid State Sci. 8, 1015–1022 (2006)

    Article  CAS  Google Scholar 

  23. P. Hajra, S. Basu, S. Dutta, P. Brahma, D. Chakravorty, Exchange bias in ferrimagnetic-antiferromagnetic nanocomposite produced by mechanical attrition. J. Magn. Magn. Mater. 14, 2269–2275 (2009)

    Article  Google Scholar 

  24. L. Lutterotti, P. Scardi, Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Cryst. 23, 246–252 (1990)

    Article  CAS  Google Scholar 

  25. B.D. Cullity, Elements of X-ray Diffraction (Addison Wesley Publishing Company, Reading, 1978)

    Google Scholar 

  26. J.A. Dean, Lange's Handbook of Chemistry (McGraw-Hill Inc, New York, 1999)

    Google Scholar 

  27. S.C. Sahoo, N. Venkataramani, S. Prasad, M. Bohra, R. Krishnan, Magnetic properties of nanocrystalline CoFe2O4/ZnFe2O4 bilayers. J. Supercond. Nov. Magn. 25, 2653–2657 (2012). https://doi.org/10.1007/s10948-011-1237-y

    Article  CAS  Google Scholar 

  28. U. Klekotka, B. Piotrowska, D. Satuła, B. Kalska-Szostko, Modified ferrite core-shell nanoparticles magneto-structural characterization. Appl. Surf. Sci 444, 161–167 (2018)

    Article  CAS  Google Scholar 

  29. B. Xu, G. Zhou, X. Wang, Rational synthesis and the structure-property relationships of nanoheterostructures: a combinative study of experiments and theory. NPG Asia Mater. 7, e164 (2015). https://doi.org/10.1038/am.2015.4

    Article  Google Scholar 

  30. M. Casavola, R. Buonsanti, G. Caputo, P.D. Cozzoli, Colloidal strategies for preparing oxide-based hybrid nanocrystals. Eur. J. Inorg. Chem. 2008(6), 837 (2008). https://doi.org/10.1002/ejic.200701047

    Article  CAS  Google Scholar 

  31. R.B. Campbell, Battling tumors with magnetic nanotherapeutics and hyperthermia: turning up the heat. Nanomedicine 2, 649–652 (2007)

    Article  CAS  Google Scholar 

  32. A. Quarta, C. Piccirillo, G. Mandriota, R. Di Corato, Nanoheterostructures (NHS) and their applications in nanomedicine: focusing on in vivo studies. Materials 12, 139 (2019). https://doi.org/10.3390/ma12010139

    Article  CAS  PubMed Central  Google Scholar 

  33. A. Alarifi, N.M. Deraza, S. Shaban, Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J. Alloys Compd. 486, 501–506 (2009)

    Article  CAS  Google Scholar 

  34. A. Tomitaka, H. Kobayashi, T. Yamada, M. Jeun, S. Bae, Y. Takemura, Magnetization and self-heating temperature of NiFe2O4 nanoparticles measured by applying ac magnetic field. J. Phys.: Conf. Ser. 200, 122010 (2010). https://doi.org/10.1088/1742-6596/200/12/122010

    Article  CAS  Google Scholar 

  35. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A 240(826), 599–642 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  Google Scholar 

  36. R.G. Kulkarini, V.U. Patial, Magnetic ordering in Cu-Zn ferrite. J. Mater. Sci. 17, 843 (1982)

    Article  Google Scholar 

  37. Q. Pankhurst, J. Connolly, S. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 167 (2003)

    Article  Google Scholar 

  38. A. Villanueva, M. Canete, A. Roca, M. Calero, S. Verdaguer, C. Serna, M. Morales, R. Miranda, The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20, 115103 (2009). https://doi.org/10.1088/0957-4484/20/11/115103

    Article  CAS  PubMed  Google Scholar 

  39. A. Skumiel, Suitability of water based magnetic fluid with CoFe2O4 particles in hyperthermia. J. Magn. Magn. Mater. 307(1), 85–90 (2006)

    Article  CAS  Google Scholar 

  40. G. Vallejo-Fernandez et al., Mechanisms of hyperthermia in magnetic nanoparticles. J. Phys. D 46(31), 312001 (2013)

    Article  Google Scholar 

  41. H. Mamiya, Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. J. Nanomater. 2013, 1–17 (2013)

    Article  Google Scholar 

  42. M. Mozaffari, Y. Hadadian, A. Aftabi, M.O. Moakhar, The effect of cobalt substitution on magnetic hardening of magnetite. J. Magn. Magn. Mater. 354, 119–124 (2014)

    Article  CAS  Google Scholar 

  43. R. Rosensweig, Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370 (2002)

    Article  CAS  Google Scholar 

  44. S. Dutz, R. Hergt, J. Murbe, R. Muller, M. Zeisberger, W. Andra, J. Topferc, M.E. Bellemann, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 305 (2007)

    Article  CAS  Google Scholar 

  45. S. Bae, S. Lee, Applications of NiFe2O4NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine. Appl. Phys. Lett. 89, 252503 (2006)

    Article  Google Scholar 

  46. Z. Hedayatnasab, F. Abnisa, W.M.A. Wan Daud, Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy. Mater. Sci. Eng. 334, 012042 (2018). https://doi.org/10.1088/1757-899X/334/1/012042

    Article  Google Scholar 

  47. E.L. Verde, G.T. Landi, M.S. Carrião, A.L. Drummond, J.A. Gomes, E.D. Vieira, M.H. Sousa, A.F. Bakuzis, Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes. AIP Adv. 2, 032120 (2012)

    Article  Google Scholar 

  48. S.A. Hassanzadeh-Tabrizi, Mg0.5Ni0.5Fe2O4 nanoparticles as heating agents for hyperthermia treatment. J. Am. Ceram. Soc. 102, 2752–2760 (2019)

    CAS  Google Scholar 

  49. H. Ghayour, M. Abdellahi, M.G. Nejad, A. Khandan, S. Saber-Samandari, Study of the effect of the Zn2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1−xZnxFe2O4 ferrite for magnetic hyperthermia. J. Aust. Ceram. Soc. 54, 223–230 (2018). https://doi.org/10.1007/s41779-017-0144-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Roumaih.

Ethics declarations

Conflict of interest

There are no conflict of interest exist, where this work has been approved from my institute where the work has been carried out.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumaih, K., Yehia, M. & Hassan, H.E. Synthesis and Characterization of Core–Shell NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 Nanoferrites. J Inorg Organomet Polym 30, 3132–3142 (2020). https://doi.org/10.1007/s10904-020-01476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01476-y

Keywords

Navigation