Skip to main content
Log in

The New Challenge of Acid-Based Geopolymers Synthesized with the Incorporation of Lithium Ions as Cathode Materials for Lithium-Ion Batteries

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The central focus of this research work is upon the synthesis of Lix-geopolymers (where x = 0.5 and 0.75) performed with the integration of lithium ions, in order to be used as cathode materials for lithium ions batteries. The obtained results presenting the requirements for these types of materials, demonstrate that Li-geopolymers could stand for a new alternative. The geopolymers were prepared at ambient temperature. The identification phase was carried out by powders X-ray diffraction, after calcination at various temperatures. The thermal stability was investigated by differential thermal analysis up to 1400 °C. With increase of lithium ions insertion, the temperature relative to the evaporation of P2O5 groups increased accompanied by a decrease in the mass loss relative to this phenomenon. The electrical measurements of both samples, were elaborated in the frequency range of 1–106 Hz and at a temperature range of 75–725 °C. After heating at 300 °C, the electrical conductivity values in the Li0.5-geopolymer material, were in the range of 10−6 S cm−1 and 10−4 S cm−1. By increasing lithium ions, the electrical conductivity values of the Li0.75-geopolymer sample, went from 10−7 to 10−5 S cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Li, J. Wang, H. Huang, J. Wang, M. Zhang, M. Liang, Co-coating effect of GdPO4 and carbon on LiFePO4 cathode surface for lithium-ion batteries. Adv. Powder Technol. 30(8), 1442–1449 (2019)

    Article  CAS  Google Scholar 

  2. Z. Xu, L. Gao, Y. Liu, L. Li, Review—recent developments in the doped LiFePO4 cathode materials for power lithium-ion batteries. J. Electrochem. Soc. 163(13), A2600–A2610 (2016)

    Article  CAS  Google Scholar 

  3. P.K. Nayak, et al., Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 8(8), 1702397 (2018)

    Article  Google Scholar 

  4. C. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14(7), 1125–1144 (2010)

    Article  CAS  Google Scholar 

  5. S.P. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43(21), 6799–6833 (2008)

    Article  CAS  Google Scholar 

  6. R. Reinhardt, B. Amante García, L. Canals Casals, S. Gassó Domingo, in Project Management and Engineering Research, ed. by J.L. Ayuso Muñoz, J.L. Yagüe Blanco, S.F. Capuz-Rizo (Springer International Publishing, Cham, 2019), pp. 99–110

    Chapter  Google Scholar 

  7. D. Li et al., Production of lithium-ion cathode material for automotive batteries using melting casting process’, in 9th International Symposium on High-Temperature Metallurgical Processing, ed. by J.-Y. Hwang, T. Jiang, M.W. Kennedy, D. Gregurek, S. Wang, B. Zhao, O. Yücel, E. Keskinkilic, J.P. Downey, Z. Peng, R. Padilla (Springer International Publishing, Cham, 2018), pp. 135–146

  8. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188 (1997)

    Article  CAS  Google Scholar 

  9. J. Yang, J.J. Xu, Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J. Electrochem. Soc. 153(4), A716 (2006)

    Article  CAS  Google Scholar 

  10. P. Sauriol, et al., Fe 3+ reduction during melt-synthesis of LiFePO4. Can. J. Chem. Eng. 97(8), 2196–2210 (2019)

    Article  CAS  Google Scholar 

  11. G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler, M. Wohlfahrt-Mehrens, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources 119–121, 247–251 (2003)

    Article  Google Scholar 

  12. D. Seung-Hyun Lee, W.B. Im, X. Liang, High density conductive LiFePO4 cathode with enhanced high-rate and high temperature performance. J. Mater. Chem. Phys. 232, 367–373 (2019)

    Article  CAS  Google Scholar 

  13. L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    Article  CAS  Google Scholar 

  14. H. Lee, et al: Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries. J. Power Sources 434, 226713 (2019)

    Article  CAS  Google Scholar 

  15. J. Davidovits, Geopolymers: inorganic polymeric new materials. J. Therm. Anal. Calorim. 37(8), 1633–1656 (1991)

    Article  CAS  Google Scholar 

  16. D. Cao, D. Su, B. Lu, Y. Yang, Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid. J. Chin. Ceram. Soc. 33(11), 1385–1389 (2005)

    CAS  Google Scholar 

  17. M. Sellami, M. Barre, M. Toumi, Synthesis, thermal properties and electrical conductivity of phosphoric acid-based geopolymer with metakaolin. J. Appl. Clay Sci. 180, 105–192 (2019)

    Article  Google Scholar 

  18. X. Cui, L. Liu, Y. He, J. Chen, J. Zhou, A novel aluminosilicate geopolymer material with low dielectric loss. J. Mater. Chem. Phys. 130(1–2), 1–4 (2011)

    Article  CAS  Google Scholar 

  19. A. Moguš-Milanković, K. Sklepić, P. Mošner, L. Koudelka, P. Kalenda, Lithium-ion mobility in quaternary boro–germano–phosphate glasses. J. Phys. Chem. B 120(16), 3978–3987 (2016)

    Article  Google Scholar 

  20. L. Liu, X. Cui, Y. He, S. Liu, S. Gong, The phase evolution of phosphoric acid-based geopolymers at elevated temperatures. J. Mater. Lett. 66(1), 10–12 (2012)

    Article  CAS  Google Scholar 

  21. J.L. Bell, P.E. Driemeyer, W.M. Kriven, Formation of ceramics from metakaolin-based geopolymers: part I-Cs-based geopolymer. J. Am. Ceram. Soc. 92(1), 1–8 (2009)

    Article  CAS  Google Scholar 

  22. J. Yuan, et al., Effects of Li substitution on the microstructure and thermal expansion behavior of pollucite derived from geopolymer. J. Am. Ceram. Soc. 99(11), 3784–3791 (2016)

    Article  CAS  Google Scholar 

  23. M. Rokita, M. Handke, W. Mozgawa, Spectroscopic studies of polymorphs of AlPO4 and SiO2. J. Mol. Struct. 450(1–3), 213–217 (1998)

    Article  CAS  Google Scholar 

  24. J. Temuujin, W. Rickard, M. Lee, A. van Riessen, Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings. J. Non-Cryst. Solids 357(5), 1399–1404 (2011)

    Article  CAS  Google Scholar 

  25. J. Temuujin, A. Minjigmaa, W. Rickard, M. Lee, I. Williams, A. van Riessen, Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. J. Hazard. Mater. 180(1–3), 748–752 (2010)

    Article  CAS  Google Scholar 

  26. O. Bohnké, J.C. Badot, J. Emery, Broadband dielectric spectroscopy study of Li+ ion motions in the fast ionic conductor Li3xLa2/3–xTiO3(x = 0.09); comparison with 7Li NMR results. J. Phys. Condens. Matter. 15(44), 7571–7584 (2003)

    Article  Google Scholar 

  27. S. Poisson, F. dÕYvoire, N.H. Dung, E. Bretey, P. Berthet, Crystal structure and cation transport properties of the layered monodiphosphates: Li9M3(P2O7)3(PO4)2(M = Al, Ga, Cr, Fe). J. Solid State Chem. 138, 32–40 (1998)

    Article  CAS  Google Scholar 

  28. Y. Wang, R. Mei, X. Yang, Enhanced electrochemical properties of LiFePO4/C synthesized with two kinds of carbon sources, PEG-4000 (organic) and Super p (inorganic). Ceram. Int. 40(6), 8439–8444 (2014)

    Article  CAS  Google Scholar 

  29. C. Kuss, D. Lepage, G. Liang, S.B. Schougaard, Ultrafast charging of LiFePO4 with gaseous oxidants under ambient conditions. Chem. Sci. 4(11), 4223–4227 (2013)

    Article  CAS  Google Scholar 

  30. J. Yang, et al., LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy Environ. Sci. 6(5), 1521–1528 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouna Sellami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellami, M., Barre, M. & Toumi, M. The New Challenge of Acid-Based Geopolymers Synthesized with the Incorporation of Lithium Ions as Cathode Materials for Lithium-Ion Batteries. J Inorg Organomet Polym 30, 3126–3131 (2020). https://doi.org/10.1007/s10904-020-01475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01475-z

Keywords

Navigation