Skip to main content
Log in

Synthesis of Helical and Straight Carbon Nanofibers on Water Soluble Sodium Chloride Supported Catalyst

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Carbon nanofibers are synthesised via chemical vapour deposition of acetylene as carbon source through using water soluble catalysts. The new water soluble catalyst is prepared by supporting the copper on sodium chloride salt. Copper acetate and copper nitrate salts are used for preparing catalysts through impregnation method. The yield of carbon deposits using the catalyst prepared by copper acetate is almost twenty times higher than the one prepared by copper nitrate precursor. The X-ray diffraction pattern and field emission scanning electron microscopy (FESEM) images confirm the formation of CuO in the catalyst after calcination process. The growth time for carbon material is 15 min. The FESEM images show the growth of helical and straight carbon nanofibers on the catalysts with metal loading of 5 wt% at 600, 650 and 680 °C. The results showed that the morphology of the carbon deposited on the catalyst depends on both the amount of metal loaded on the catalyst and reaction temperature, while there is a significant interaction between them. However, fishbone carbon nanofibers with diameters less than 100 nm are deposited on the catalysts with metal loading of 1 wt% at 650 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Huang, L. Peng, Y. Liu, G. Zhao, J.Y. Chen, G. Yu, A.C.S. Appl, Mater. Interfaces 8, 15205 (2016)

    Article  CAS  Google Scholar 

  2. T. Yan, Z. Wang, Y.-Q. Wang, Z.-J. Pan, Mater. Design 143, 214 (2018)

    Article  CAS  Google Scholar 

  3. S.H. Chung, P. Han, R. Singhal, V. Kalra, A. Manthiram, Adv. Energy Mater. 5, 1500738 (2015)

    Article  Google Scholar 

  4. R. Singhal, S.-H. Chung, A. Manthiram, V. Kalra, J. Mater. Chem. A 3, 4530 (2015)

    Article  CAS  Google Scholar 

  5. Z. He, M. Li, Y. Li, J. Zhu, Y. Jiang, W. Meng, H. Zhou, L. Wang, L. Dai, Electrochim. Acta 281, 601 (2018)

    Article  CAS  Google Scholar 

  6. A.D. Kiadehi, A. Rahimpour, M. Jahanshahi, A.A. Ghoreyshi, J. Ind. Eng. Chem. 22, 199 (2015)

    Article  Google Scholar 

  7. M. Wu, W. Ni, J. Hu, J. Ma, Nano-Micro Letters 11, 44 (2019)

    Article  Google Scholar 

  8. B. Xu, S. Qi, P. He, J. Ma, Chem. Asian J. 14, 2925 (2019)

    Article  CAS  Google Scholar 

  9. Y. Manawi, A. Samara, T. Al-Ansari, M. Atieh, Materials 11, 1 (2018)

    Article  Google Scholar 

  10. L. Guevara, R. Welsh, M. Atwater, Metals 8, 1 (2018)

    Article  Google Scholar 

  11. W.A.W.A.K. Silas, W.A. Ghani, T.S. Choong, U. Rashid, Catal. Rev. 61, 134 (2019)

    Article  CAS  Google Scholar 

  12. J. Almirón, H. Alcazar, R. Churata, F. Roudet, K. Ziouche, D. Chicot, Mater. Res. Express 5, 1 (2018)

    Article  Google Scholar 

  13. A. Szabó, D. Méhn, Z. Kónya, A. Fonseca, J.B. Nagy, PhysChemComm 6, 40 (2003)

    Article  Google Scholar 

  14. S.Y. Brichka, L.Y. Kotel, G. Prikhod’ko, A. Brichka, Russ. J. Appl. Chem. 79, 1278 (2006)

    Article  CAS  Google Scholar 

  15. J.H.T. Ooi, W.-W. Liu, V. Thota, A.R. Mohamed, S.-P. Chai, Physica E 43, 1011 (2011)

    Article  CAS  Google Scholar 

  16. R. Rajarao, B.R. Bhat, Nanomater. Nanotechnol. 2, 1 (2012)

    Article  Google Scholar 

  17. E.S. Steigerwalt, C. Lukehart, J. Nanosci. Nanotechnol. 2, 25 (2002)

    Article  CAS  Google Scholar 

  18. J. Geng, I.A. Kinloch, C. Singh, V.B. Golovko, B.F. Johnson, M.S. Shaffer, Y. Li, A.H. Windle, J. Phys. Chem. B 109, 16665 (2005)

    Article  CAS  Google Scholar 

  19. Y. Qin, Y. Zhang, X. Sun, Microchim. Acta 164, 425 (2009)

    Article  CAS  Google Scholar 

  20. M. Jia, Y. Zhang, Mater. Lett. 63, 2111 (2009)

    Article  CAS  Google Scholar 

  21. R. Ravindra, B.R. Bhat, J. Nanopart. Res. 14, 656 (2012)

    Article  Google Scholar 

  22. M.A. Davoodi, J. Towfighi, A. Rashidi, Chem. Eng. J. 221, 159 (2013)

    Article  CAS  Google Scholar 

  23. A. Eftekhari, P. Jafarkhani, F. Moztarzadeh, Carbon 44, 1343 (2006)

    Article  CAS  Google Scholar 

  24. I.V. Krasnikova, I.V. Mishakov, A.A. Vedyagin, P.V. Krivoshapkin, D.V. Korneev, Compos. Commun. 7, 65 (2018)

    Article  Google Scholar 

  25. M.S. Maubane, S.S. Bhoware, A. Shaikjee, N.J. Coville, Diamond Relat. Mater. 72, 53 (2017)

    Article  CAS  Google Scholar 

  26. K.K. Taha, M. Elamin, B.Y. Abdulkhair, J. Porous Mater. 26, 525 (2019)

    Article  CAS  Google Scholar 

  27. K.M. Rambau, N.M. Musyoka, N. Manyala, J. Ren, H.W. Langmi, M.K. Mathe, J. Environ. Sci. Health A 53, 1115 (2018)

    Article  CAS  Google Scholar 

  28. A.A. Silva, R.A. Pinheiro, V.J. Trava-Airoldi, E.J. Corat, Fuller. Nanotub. Carbon Nanostruct. 26, 315 (2018)

    Article  CAS  Google Scholar 

  29. F. Hassani, H. Tavakol, Fuller. Nanotub. Carbon Nanostruct. 26, 479 (2018)

    Article  CAS  Google Scholar 

  30. N. Candela, F. Calvo-Castañera, A. Maroto-Valiente, J. Alvarez-Rodríguez, Powder Metall. 60, 345 (2017)

    Article  CAS  Google Scholar 

  31. P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.O. Coppens, Angew. Chem. Int. Ed. 55, 122 (2016)

    Article  CAS  Google Scholar 

  32. Y. Tuo, X. Liu, L. Shi, L. Yang, P. Li, W. Yuan, Catal. Today (2018). https://doi.org/10.1016/j.cattod.2018.05.055

    Article  Google Scholar 

  33. J. Díez-Ramírez, P. Sánchez, A. Rodríguez-Gómez, J.L. Valverde, F. Dorado, Ind. Eng. Chem. Res. 55, 3556 (2016)

    Article  Google Scholar 

  34. S. Manafi, S.H. Badiee, S. Joughehdoust, Int. J. Nanomanuf. 5, 106 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alimorad Rashidi or Ali Reza Solaimany Nazar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radnia, H., Rashidi, A. & Solaimany Nazar, A.R. Synthesis of Helical and Straight Carbon Nanofibers on Water Soluble Sodium Chloride Supported Catalyst. J Inorg Organomet Polym 30, 1600–1608 (2020). https://doi.org/10.1007/s10904-019-01381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01381-z

Keywords

Navigation