Skip to main content
Log in

Synthesis and Characterization of Biocompatible Silver Nanoparticles for Anticancer Application

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanobiotechnology is a fast developing scientific field having several applications in biochemistry, medicine, biology, engineering, etc. and plays a key role in the development and improvement of clean, eco-friendly, non-toxic and cost effective techniques for the synthesis and assembly of metal nanoparticles. One of the foremost green synthesis approaches includes biofabrication of silver nanoparticles (AgNPs) using plants and plant products. In the present study, we have synthesized silver nanoparticles using aqueous extract of Indian spice Asafoetida. Their formation was confirmed through UV–Vis spectral peak at 426.4 nm and their stability was also monitored for 3 months at room temperature using dynamic light scattering (DLS). DLS analysis revealed that the particles so formed were not only monodispersed in nature but also stable at room temperature for 3 months with a reported size of 90–95 nm. The characterization techniques revealed that synthesized AgNPs were well distributed with size ranging from 90 to 100 nm. Furthermore, Asafoetida-AgNPs were tested for their anticancer activity against the HepG2 cell line. Cell viability assay was done to check the percentage of viable cells and morphological changes at various test concentrations (0.01, 0.1, 1 and 10 ppm) after 24 and 48 h of exposure. The recorded viable cells at lowest concentration (0.01 ppm) was found to be 58.55% and at highest concentration (10 ppm) it was 40.08% after 24 h. Further, when the percent cell viability was observed at 48 h it was 45.22% and 20.23% at lowest and highest concentrations. Morphological characterization of HepG2 cells after the treatment of Asafoetida-AgNPs showed floating and patchy cells signifying their toxic nature against cancerous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.M. Dimitrijevic, D.M. Bartels, C.D. Jonah, K. Takahashi, T. Rajh, Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J. Phys. Chem. B 105(5), 954–959 (2001). https://doi.org/10.1021/jp0028296

    Article  CAS  Google Scholar 

  2. Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem. Mater. 14(11), 4736–4745 (2002). https://doi.org/10.1021/cm020587b

    Article  CAS  Google Scholar 

  3. L. Zhang, Y.H. Shen, A.J. Xie, S.K. Li, C. Wang, One-step synthesis of silver nanoparticles in self-assembled multilayered films based on a Keggin structure compound. J. Mater. Chem. 18(11), 1196–1203 (2008). https://doi.org/10.1039/B717151J

    Article  CAS  Google Scholar 

  4. V. Kathiravan, S. Ravi, S. Ashokkumar, Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim. Acta A 130, 116–121 (2014). https://doi.org/10.1016/j.saa.2014.03.107

    Article  CAS  Google Scholar 

  5. P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940–13941 (2003). https://doi.org/10.1021/ja029267j

    Article  CAS  PubMed  Google Scholar 

  6. S. Dhuper, D. Panda, P.L. Nayak, Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends J. Nanotechnol. Appl. 13(2), 16–22 (2012)

    Google Scholar 

  7. D. Philip, Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E 42(5), 1417–1424 (2010). https://doi.org/10.1016/j.physe.2009.11.081

    Article  CAS  Google Scholar 

  8. U.B. Jagtap, V.A. Bapat, Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Indus. Crops Prod. 46, 132–137 (2013). https://doi.org/10.1016/j.indcrop.2013.01.019

    Article  CAS  Google Scholar 

  9. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9(1), 1–7 (2016). https://doi.org/10.1016/j.jrras.2015.06.006

    Article  CAS  Google Scholar 

  10. U.K. Sur, B. Ankamwar, S. Karmakar, A. Halder, P. Das, Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha. Mater. Tod. Proc. 5(1), 2321–2329 (2018). https://doi.org/10.1016/j.matpr.2017.09.236

    Article  CAS  Google Scholar 

  11. H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S.P. De, A. Misra, Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A 339(1–3), 134–139 (2009). https://doi.org/10.1016/j.colsurfa.2009.02.008

    Article  CAS  Google Scholar 

  12. P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, M. Saravanan, Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colliods Surf. B 108, 255–259 (2013). https://doi.org/10.1016/j.colsurfb.2013.03.017

    Article  CAS  Google Scholar 

  13. K. Anandalakshmi, J. Venugobal, V. Ramasamy, Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 6(3), 399–408 (2016). https://doi.org/10.1007/s13204-015-0449-z

    Article  CAS  Google Scholar 

  14. S. Botcha, S.D. Prattipati, Green synthesis of silver nanoparticles using Hyptis suaveolens (L.) Poit leaf extracts, their characterization and cytotoxicity evaluation against PC-3 and MDA-MB 231 cells. Biologia (2019). https://doi.org/10.2478/s11756-019-00222-1

    Article  Google Scholar 

  15. R. Vaidyanathan, K. Kalishwaralal, S. Gopalram, S. Gurunathan, Nanosilver—the burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv. 27(6), 924–937 (2009). https://doi.org/10.1016/j.biotechadv.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  16. J. Sangeetha, J. Sandhya, J. Philip, Biosynthesis and functionalization of silver nanoparticles using Nigella sativa, Dioscorea alata and Ferula asafoetida. Sci. Adv. Mater. 6(8), 1681–1690 (2014). https://doi.org/10.1166/sam.2014.1991

    Article  CAS  Google Scholar 

  17. M. Zahin, Studies on antibacterial, antioxidant and antimutagenic activities of certain Indian medicinal plants. Doctoral dissertation, Aligarh Muslim University (2010)

  18. N. Satsangi, S. Preet, Exploring nanobiotechnology in controlling malaria and cancer. IEEE Region 10 Humanitarian Technology Conference (R10-HTC). (2016). https://doi.org/10.1109/r10-htc.2016.7906824

  19. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  20. B. Ulug, M.H. Turkdemir, A. Cicek, A. Mete, Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim. Acta A 13, 153–161 (2015). https://doi.org/10.1016/j.saa.2014.06.142

    Article  CAS  Google Scholar 

  21. M.A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C.E. Small, B.A. Ritzo, V.P. Drachev, V.M. Shalaev, Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett. 31(20), 3022–3024 (2006). https://doi.org/10.1364/OL.31.003022

    Article  CAS  PubMed  Google Scholar 

  22. D. Philip, C. Unni, S.A. Aromal, V.K. Vidhu, Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A 78(2), 899–904 (2011). https://doi.org/10.1016/j.saa.2010.12.060

    Article  CAS  Google Scholar 

  23. D. Raghunandan, B.D. Mahesh, S. Basavaraja, S.D. Balaji, S.Y. Manjunath, A. Venkataraman, Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J. Nanopart. Res. 13(5), 2021–2028 (2011). https://doi.org/10.1007/s11051-010-9956-8

    Article  CAS  Google Scholar 

  24. S. Preet, N. Satsangi, Size controlled green synthesis of biocompatible silver nanoparticles with enhanced mosquito larvicidal activity. J. Clust. Sci. (2019). https://doi.org/10.1007/s10876-019-01606-8

    Article  Google Scholar 

  25. A. Hamidi, M.E. Yazdi, M.S. Amiri, H.A. Hosseini, M. Darroudi, Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Res. Chem. Intermed. 45(5), 2915–2925 (2019). https://doi.org/10.1007/s11164-019-03770-y

    Article  CAS  Google Scholar 

  26. M. Anjugam, B. Vaseeharan, A. Iswarya, M. Divya, N.M. Prabhu, K. Sankaranarayanan, Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential. Microb. Pathog. 115, 31–40 (2018). https://doi.org/10.1016/j.micpath.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  27. D.L. Van Hyning, C.F. Zukoski, Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14(24), 7034–7046 (1998). https://doi.org/10.1021/la980325h

    Article  Google Scholar 

  28. B. Molleman, T. Hiemstra, Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium. Environ. Sci. 4(6), 1314–1327 (2017)

    CAS  Google Scholar 

  29. D.P. Sakarkar, Morphological study of silver nanoparticles by using titronx-100 [surfactant]. Int. J. Adv. Eng. Res. Stud. 2(3), 5–8 (2013)

    Google Scholar 

  30. S. Kim, J.E. Choi, J. Choi, K.H. Chung, K. Park, J. Yi, D.Y. Ryu, Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 23(6), 1076–1084 (2009). https://doi.org/10.1016/j.tiv.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  31. K. Kawata, M. Osawa, S. Okabe, In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43(15), 6046–6051 (2009). https://doi.org/10.1021/es900754q

    Article  CAS  PubMed  Google Scholar 

  32. W. Liu, Y. Wu, C. Wang, H.C. Li, T. Wang, C.Y. Liao, G.B. Jiang, Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3), 319–330 (2010). https://doi.org/10.3109/17435390.2010.483745

    Article  CAS  PubMed  Google Scholar 

  33. L. Braydich-Stolle, S. Hussain, J.J. Schlager, M.C. Hofmann, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88(2), 412–419 (2005). https://doi.org/10.1093/toxsci/kfi256

    Article  CAS  PubMed  Google Scholar 

  34. F. Faedmaleki, F.H. Shirazi, A.A. Salarian, H.A. Ashtiani, H. Rastegar, Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran. J. Pharm. Res. 13(1), 235–242 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Department of Science and Technology, New Delhi is gratefully acknowledged for providing the author (Neh Satsangi, IF130922) with financial assistance in form of INSPIRE fellowship. Author is thankful to National Institute of Oceanography, Goa, Advanced Instrumentation Research Facility (AIRF), JNU, New Delhi and International Centre for Genetic Engineering and Biotechnology, New Delhi for characterization studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neh Satsangi.

Ethics declarations

Conflict of interest

The author declare that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satsangi, N. Synthesis and Characterization of Biocompatible Silver Nanoparticles for Anticancer Application. J Inorg Organomet Polym 30, 1907–1914 (2020). https://doi.org/10.1007/s10904-019-01372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01372-0

Keywords

Navigation