Skip to main content
Log in

Preparation of Manganese Phthalocyanine Modified Nano-BiVO4 Photocatalyst with Perforated Hollow Morphology and Its Catalytic Performances

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nano-BiVO4 was successfully modified by manganese phthalocyanine (MnPc) with high photocatalytic activity through a simple hydrothermal path. The perforated hollow morphology of BiVO4 was maintained after the modification, which was profitable for the photocatalytic activity. The MnPc was physically combined with BiVO4 through weak links such as the Coulomb force or hydrogen bond, other than chemical bound. The band gap of the modified BiVO4 was successfully narrowed by MnPc to cause the redshift of the modified BiVO4, which provided larger visible light absorption. Therefore the MnPc-modified BiVO4 obtained improved photocatalystic activity. On the conditions of the hydrothermal temperature of 180 °C, pH of 7.5, hydrothermal time of 4 h, 3.30 mmol of EDTA, and the MnPc amount of 0.20 wt%, the band gap of the BiVO4 catalyst was narrowed to 2.40 eV. Under the catalysis of the MnPc-modified BiVO4, the discoloration rate of methylene blue reached 98.44% in the simulated sunlight. A synergistic effect between MnPc and BiVO4 appeared through our hydrothermal synthesis process. Such a successful modification design could be extended to other photocatalyst systems with phthalocyanine compounds and transition metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.Z. Xie, Y.J. Feng, X.D. Fu, P. Luan, L.Q. Jing, Phosphate-bridged TiO2-BiVO4 nanocomposites with exceptional visible activities for photocatalytic water splitting. J. Alloy Compd. 631, 120–124 (2015)

    Article  CAS  Google Scholar 

  2. A. Malathi, J. Madhavan, M. Ashokkumar, A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl. Catal. A. 555, 47–74 (2018)

    Article  CAS  Google Scholar 

  3. K. Natarajan, H.C. Bajaj, R.J. Tayade, Rajesh, Synthesis route impact on BiVO4 nanoparticles and their visible light photocatalytic activity under green LED irradiation. J. Nanosci. Nanotechnol. 19, 5100–5115 (2019)

    Article  CAS  Google Scholar 

  4. C. Regmi, G. Gyawali, T.H. Kim, Microwave-assisted and EDTA mediated hydrothermal synthesis of a BiVO4 semiconductor and its photocatalytic activity. J. Nanosci. Nanotechnol. 16, 11180–11185 (2016)

    Article  CAS  Google Scholar 

  5. Z. Ye, X. Xiao, J. Chen, Fabrication of BiVO4/BiOBr composite with enhanced photocatalytic activity by a CTAB-assisted polyol method. J. Photochem. Photobiol. A. 368, 153–161 (2019)

    Article  CAS  Google Scholar 

  6. W.L. Shi, F. Guo, J.B. Chen, G.B. Che, X. Lin, Hydrothermal synthesis of InVO4/Graphitic carbon nitride heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B. J. Alloy. Compd. 612, 143–148 (2014)

    Article  CAS  Google Scholar 

  7. M. Wang, J. Han, C. Lv, Ag, B, and Eu tri-modified BiVO4 photocatalysts with enhanced photocatalytic performance under visible-light irradiation. J. Alloy. Compd. 753, 465–474 (2018)

    Article  CAS  Google Scholar 

  8. H.Y. Li, Y.J. Sun, B. Cai, S.Y. Gan, D.X. Han, L. Niu, T.S. Wu, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl. Catal. B. 170–171, 206–214 (2015)

    Article  Google Scholar 

  9. S. Obregon, E.D. Barriga-Castro, R. Mendoza-Resendez, Enhanced photocatalytic behavior of BiVO4 through photoinduced charge transfer to amorphous beta-FeOOH nanoparticles. Ceram. Int. 42, 17773–17780 (2016)

    Article  CAS  Google Scholar 

  10. Y. Shen, X. Wang, G. Zuo, Guifu, Influence of heat treatment on photocatalytic performance of BiVO4 synthesized by hydrothermal method. High Temp. Mater. Proc. 35, 853–856 (2016)

    CAS  Google Scholar 

  11. M. Sui, C. Han, Y. Wang, Photoelectrochemical studies on BiVO4 membranes deposition on transparent conductive substrates by a facile electrophoresis route. J. Mater. Sci. 27, 4290–4296 (2016)

    CAS  Google Scholar 

  12. S. Kunduz, G.S.P. Soylu, Highly active BiVO4 nanoparticles: The enhanced photocatalytic properties under natural sunlight for removal of phenol from wastewater. Sep. Purif. Technol. 141, 221–228 (2015)

    Article  CAS  Google Scholar 

  13. Y. Hu, J. Fan, C. Pu, Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification. J. Photochem. Photobiol. A. 337, 172–183 (2017)

    Article  CAS  Google Scholar 

  14. T. Liu, V. Pasumarthi, C. LaPorte, Z. Feng, Q. Li, J. Yang, C. Li, M. Dupuis, bimodal hole transport in bulk BiVO4 from computation. J. Mater. Chem. A 6, 3714–3723 (2018)

    Article  CAS  Google Scholar 

  15. J.Z. Yin, S.B. Huang, Z.C. Jian, Z.X. Wang, Y.Q. Zhang, Fabrication of heterojunction SnO2/BiVO4 composites having enhanced visible light photocatalystic activity. Mater. Sci. Semicond. Proc. 34, 198–204 (2015)

    Article  CAS  Google Scholar 

  16. W.Q. Ma, Z.L. Li, W. Liu, Hydrothermal Preparation of BiVO4 photocatalyst with perforated hollow morphology and its performance on methylene blue degradation. Ceram. Int. 41, 4340–4347 (2015)

    Article  CAS  Google Scholar 

  17. L. Xu, Y.G. Wei, W. Guo, Y.H. Guo, Y.N. Guo, One-pot solvothermal preparation and enhanced photocatalytic activity of metallic silver and grapheme co-doped BiVO4 ternary systems. Appl. Surf. Sci. 332, 682–693 (2015)

    Article  CAS  Google Scholar 

  18. K. Ji, H. Dai, J. Deng, H. Zang, H. Arandiyan, S. Xie, H. Yang, 3DOM BiVO4 supported silver bromide and noble metals: High-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. Appl. Catal. B. 168–169, 274–282 (2015)

    Article  Google Scholar 

  19. X.M. Gao, Z.H. Wang, F. Fu, W.H. Li, Effects of pH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method. Mat. Sci. Semicond. Proc. 35, 197–206 (2015)

    Article  CAS  Google Scholar 

  20. Y.Y. Luo, G.Q. Tan, G.H. Dong, H.J. Ren, A. Xia, Effects of structure, morphology, and up-conversion on Nd-doped BiVO4 system with high photocatalytic activity. Ceram. Int. 41, 3259–3268 (2015)

    Article  CAS  Google Scholar 

  21. N. Wetchakun, S. Chainet, S. Phanichphant, K. Wetchakun, Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram. Int. 41, 5999–6004 (2015)

    Article  CAS  Google Scholar 

  22. J.Q. Li, M.M. Cui, Z.Y. Guo, Z.X. Liu, Z.F. Zhu, Preparation of p-n junction BiVO4/Ag2O heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Mater. Lett. 151, 75–78 (2015)

    Article  CAS  Google Scholar 

  23. Y. Zhou, W. Li, W.C. Wan, R.Y. Zhang, Y.H. Lin, W/Mo co-doped BiVO4 for photocatalytic treatment of polymer-containing wastewater in oilfield. Superlattices Microstruct. 82, 67–74 (2015)

    Article  CAS  Google Scholar 

  24. N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. Appl. Mater. Interfaces 4, 3718–3723 (2012)

    Article  CAS  Google Scholar 

  25. V. Pasumarthi, T. Liu, M. Dupuis, C. Li, Charge carrier transport dynamics in W/Mo-doped BiVO4: first principles-based mesoscale characterization. J. Mater. Chem. A 7, 3054–3065 (2019)

    Article  CAS  Google Scholar 

  26. J.H. Bi, J. Li, L. Wu, H.R. Zheng, W.Y. Su, Effects of aluminum substitution on photocatalytic property of BiVO4 under visible light irradiation. Mater. Res. Bull. 47, 850–855 (2012)

    Article  CAS  Google Scholar 

  27. S.W. Cao, Z. Yin, J. Barber, F.Y.C. Boey, S.C.J. Loo, C. Xue, Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts. Appl. Mater. Interfaces 4, 418–423 (2012)

    Article  CAS  Google Scholar 

  28. S.H. Wu, J.L. Wu, S.Y. Jia, Q.W. Chang, H.T. Ren, Y. Liu, Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures: fabrication and enhanced photocatalytic properties. Appl. Surf. Sci. 287, 389–396 (2013)

    Article  CAS  Google Scholar 

  29. A. Ebrahimian, M.A. Zanjanchi, H. Noei, M. Arvand, Y. Wang, TiO2 nanoparticles containing sulphonated cobalt phthalocyanine: preparation, characterization and photocatalytic performance. J. Environ. Chem. Eng. 2, 484–494 (2014)

    Article  CAS  Google Scholar 

  30. D. Hohnholz, S. Steinbrecher, M. Hanack, Applications of phthalocyanines in organic light emitting devices. J. Mol. Struct. 521, 231–237 (2000)

    Article  CAS  Google Scholar 

  31. N. Yazdanpour, S. Sharifnia, Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2. Sol. Energy Mater. Sol. Cells 118, 1–8 (2013)

    Article  CAS  Google Scholar 

  32. H. Shibataa, S. Ohshikab, T. Ogurac, S. Watanabeb, K. Nishio, H. Sakai, M. Abe, K. Hashimotoa, M. Matsumoto, Preparation and photocatalytic activity under visible light irradiation of mesostructured titania particles modified with phthalocyanine in the pores. J. Photochem. Photobiol. A. 217, 136–140 (2011)

    Article  Google Scholar 

  33. D. Xia, W. Li, J. Yao, S. Han, X. Wu, T. Wang, H. Wang, Y. Zhang, S. Yang, Synthesis and characterization of a new type asymmetric manganese phthalocyanine. J. Shanxi Univ. 33, 409–412 (2010). (in Chinese)

    CAS  Google Scholar 

  34. I.M. Arabatzis, N. Spyrellis, Z. Loizos, P. Falaras, Design and theoretical study of a packed bed photoreactor. J. Mater. Process. Technol. 161, 224–228 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ma, W. & Li, Z. Preparation of Manganese Phthalocyanine Modified Nano-BiVO4 Photocatalyst with Perforated Hollow Morphology and Its Catalytic Performances. J Inorg Organomet Polym 30, 1814–1820 (2020). https://doi.org/10.1007/s10904-019-01342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01342-6

Keywords

Navigation