Skip to main content
Log in

Hydrothermal Synthesis of N-Doped GQD/CuO and N-Doped GQD/ZnO Nanophotocatalysts for MB Dye Removal Under Visible Light Irradiation: Evaluation of a New Procedure to Produce N-Doped GQD/ZnO

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

During the last decade, dye pollution has been a major environmental concern, making it necessary to develop removal methods. In this study, three nanophotocatalysts, namely ZnO, CuO, and ZnO/CuO composite, were synthesized via a hydrothermal method and then examined for degradation of methylene blue (MB) dye solution under visible light irradiation. Pure ZnO and CuO showed rather poor photocatalytic activities due to their limited photo response ranges under visible light. Accordingly, in order to overcome this limitation and improve the photocatalytic activity of ZnO and CuO, nitrogen-doped graphene quantum dots (N-GQDs) were employed. Results proved that the N-GQDs can significantly enhance photocatalytic activity of the ZnO sample, while no significant effect was observed on CuO sample. Furthermore, effects of synthesis method and added content of N-GQDs on the activity of the N-GQDs/ZnO composite samples were studied. Firstly, pure ZnO was synthesized via a hydrothermal reaction and then added to the N-GQDs precursor solution to produce N-GQD/ZnO composite in a final hydrothermal reaction (method I). Alternatively, a hydrothermal method was used to prepare the N-GQDs firstly, and then zinc acetate was introduced into this solution for final hydrothermal process (method II). The results showed higher elimination performance of the second method, by which the MB dye could be removed completely. The best nanophotocatalyst (the sample containing 3 mmol of ascorbic acid in the primary solution, prepared via the second method) demonstrated maximum dye removal efficiency (70% in about 30 min, 100% < 60 min). Thus, nanophotocatalysts of similar characteristics are suggested for industrial effluent purification under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Fatima, R. Farooq, R.W. Lindström, M. Saeed, J. Mol. Liq. (2017). https://doi.org/10.1016/j.molliq.2017.09.063

    Article  Google Scholar 

  2. Y. Lu, Y. Feng, F. Wang, X. Zou, Z. Chen, P. Chen, H. Liu, Y. Su, Q. Zhang, G. Liu, J. Photochem. Photobiol. A (2018). https://doi.org/10.1016/j.jphotochem.2017.10.049

    Article  Google Scholar 

  3. S. Xia, L. Zhang, G. Pan, P. Qian, Z. Ni, Phys. Chem. Chem. Phys. (2015). https://doi.org/10.1039/c4cp03877k

    Article  PubMed  Google Scholar 

  4. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Mater. Chem. Phys. (2009). https://doi.org/10.1016/j.matchemphys.2009.03.039

    Article  Google Scholar 

  5. M. Joshi, R. Bansal, R. Purwar, Indian J. Fibre Text. Res. 29, 239 (2004)

    CAS  Google Scholar 

  6. M.A. Hassaan, A. El Nemr, F.F. Madkour, Egypt. J. Aquat. Res. (2017). https://doi.org/10.1016/j.ejar.2016.09.006

    Article  Google Scholar 

  7. C.A.K. Gouvca, F. Wypych, S.G. Moraes, N. Durán, N. Nagata, P.P. Zamora, Chemosphere (2000). https://doi.org/10.1016/S0045-6535(99)00313-6

    Article  Google Scholar 

  8. E. Forgas, T.C. Serhat, G. Oros, Environ. Int. (2004). https://doi.org/10.1016/j.envint.2004.02.001

    Article  Google Scholar 

  9. A. Hethnawi, N.N. Nassar, A.D. Manasrah, G. Vitale, Chem. Eng. J. (2017). https://doi.org/10.1016/j.cej.2017.03.057

    Article  Google Scholar 

  10. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, J. Environ. Manag (2016). https://doi.org/10.1016/j.jenvman.2016.07.090

    Article  Google Scholar 

  11. R. Kant, Nat. Sci. (2012). https://doi.org/10.4236/ns.2012.41004

    Article  Google Scholar 

  12. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Adv. Colloid Interface Sci. (2014). https://doi.org/10.1016/j.cis.2014.04.002

    Article  PubMed  Google Scholar 

  13. B. Rani, V. Kumar, J. Singh, S. Bisht, P. Teotia, S. Sharma, R. Kela, Braz. J. Microbiol. (2014). https://doi.org/10.1590/S1517-83822014000300039

    Article  PubMed  PubMed Central  Google Scholar 

  14. K.A. Adegoke, O.S. Bello, Water Resour. Ind. (2015). https://doi.org/10.1016/j.wri.2015.09.002

    Article  Google Scholar 

  15. J.T. Chacko, K. Subramaniam, Int. J. Environ. Sci. 1, 1250 (2011)

    Google Scholar 

  16. N. Manavi, A.S. Kazemi, B. Bonakdarpour, Chem. Eng. J. (2017). https://doi.org/10.1016/j.cej.2016.11.155

    Article  Google Scholar 

  17. K.D. Mojsov, D. Andronikov, A. Janevski, A. Kuzelov, S. Gaber, Adv. Technol. 5, 81 (2016)

    Article  Google Scholar 

  18. A. Srinivasan, T. Viraraghavan, J. Environ. Manag. (2010). https://doi.org/10.1016/j.jenvman.2010.05.003

    Article  Google Scholar 

  19. M. Hamadanian, A. Reisi-vanani, M. Behpour, A.S. Esmaeily, Desalination (2011). https://doi.org/10.1016/j.desal.2011.08.028

    Article  Google Scholar 

  20. C.M. Teh, A.R. Mohamed, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2010.10.181

    Article  Google Scholar 

  21. C. Xu, G.P. Rangaiah, X.S. Zhao, Ind. Eng. Chem. Res. 53, 14641–14649 (2014). https://doi.org/10.1021/ie502367x

    Article  CAS  Google Scholar 

  22. L.M. Sanchez, R.P. Ollier, J.S. Gonzalez, V.A. Alvarez, Nanocomposite Materials for Dyes Removal (Elsevier, Amsterdam, 2018) https://doi.org/10.1016/B978-0-12-813351-4.00053-5

  23. A.A. Ashkarran, M. Fakhari, H. Hamidinezhad, H. Haddadi, M.R. Nourani, J Mater Res Technol. (2014). https://doi.org/10.1016/j.jmrt.2014.10.005

    Article  Google Scholar 

  24. C. Pan, Y. Zhu, Catal. Sci. Technol. (2015). https://doi.org/10.1039/C5CY00202H

    Article  Google Scholar 

  25. Y. Zhang, Z. Tang, X. Fu, Y. Xu, ACS Nano (2010). https://doi.org/10.1021/nn1024219

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Rahbar, M. Behpour, J. Mater. Sci.: Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-4845-2

    Article  Google Scholar 

  27. W. Yu, X. Liu, L. Pan, J. Li, J. Liu, J. Zhang, P. Li, C. Chen, Z. Sun, Appl. Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2014.07.038

    Article  Google Scholar 

  28. K. Chiang, R.U. Amal, T. Tran, Adv. Environ. Res. 6, 471 (2002)

    Article  CAS  Google Scholar 

  29. J. Kong, A.L.Ã.X. Li, H. Zhai, W. Zhang, Y. Gong, H. Li, D. Wu, J. Solid State Chem. (2010). https://doi.org/10.1016/j.jssc.2010.04.005

    Article  Google Scholar 

  30. M. Zhu, M. Han, C. Zhu, L. Hu, H. Huang, Y. Liu, Z. Kang, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.06.078

    Article  PubMed  Google Scholar 

  31. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S. Lee, Angew. Chem Int. (2010). https://doi.org/10.1002/anie.200906154

    Article  Google Scholar 

  32. M. Pirsaheb, S. Moradi, M. Shahlaei, N. Farhadian, J. Hazard. Mater. (2018). https://doi.org/10.1016/j.jhazmat.2018.04.038

    Article  PubMed  Google Scholar 

  33. H. Bozetine, Q. Wang, A. Barras, M. Li, T. Hadjersi, S. Szunerits, R. Boukherroub, J. Colloid Interface Sci. (2015). https://doi.org/10.1016/j.jcis.2015.12.001

    Article  PubMed  Google Scholar 

  34. S. Muthulingam, K. Bin, R. Khan, I. Lee, P. Uthirakumar, J. Environ. Chem. Eng. (2015). https://doi.org/10.1016/j.jece.2015.06.029

    Article  Google Scholar 

  35. A. Aaryashree, S. Biswas, P. Sharma, V. Awasthi, B.S. Sengar, A.K. Das, S. Mukherjee, Chem. Commun. (2016). https://doi.org/10.1002/slct.201600149

    Article  Google Scholar 

  36. J. Liu, M.D. Rojas-Andrade, G. Chata, Y. Peng, G. Roseman, J.-E. Lu, G.L. Millhauser, C. Saltikov, S. Chen, Nanoscale (2017). https://doi.org/10.1039/c7nr07367d

    Article  PubMed  PubMed Central  Google Scholar 

  37. X. Chu, P. Dai, Y. Dong, W. Sun, L. Bai, W. Zhang, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7873-7

    Article  Google Scholar 

  38. J. Zhang, X. Zhang, S. Dong, X. Zhou, S. Dong, J. Photochem. Photobiol. A (2016). https://doi.org/10.1016/j.jphotochem.2016.04.012

    Article  Google Scholar 

  39. Y. Zhang, D. Ma, Y. Zhang, W. Chen, S.-M. Huang, Nano Energy (2013). https://doi.org/10.1016/j.nanoen.2013.07.010

    Article  Google Scholar 

  40. R. Atchudan, T. Nesakumar, J. Immanuel, S. Perumal, R. Vinodh, Y.R. Lee, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.06.272

    Article  Google Scholar 

  41. A. Aghamali, M. Khosravi, N. Modirshahla, A. Behnajady Mohammad, J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2018.04.061

    Article  Google Scholar 

  42. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Hoboken, 2004), pp. 78–114

    Book  Google Scholar 

  43. J. Gao, M. Zhu, H. Huang, Y. Liu, Z. Kang, Inorg. Chem. Front. (2017). https://doi.org/10.1039/C7QI00614D

    Article  Google Scholar 

  44. G. Sodeifian, R. Behnood, J. Photochem. Photobiol. A 342, 25 (2017). https://doi.org/10.1016/j.jphotochem.2017.03.038

    Article  CAS  Google Scholar 

  45. Y. Haldorai, J. Shim, Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/245646

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank research deputy of University of Kashan for providing financial support for this project (Grant # Pajoohaneh-1397/12). Moreover, the authors express their thanks to the advanced laboratory of University of Kashan for providing experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossein Sodeifian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodeifian, G., Behnood, R. Hydrothermal Synthesis of N-Doped GQD/CuO and N-Doped GQD/ZnO Nanophotocatalysts for MB Dye Removal Under Visible Light Irradiation: Evaluation of a New Procedure to Produce N-Doped GQD/ZnO. J Inorg Organomet Polym 30, 1266–1280 (2020). https://doi.org/10.1007/s10904-019-01232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01232-x

Keywords

Navigation