Skip to main content
Log in

Fine Copper Nanoparticles on Amine Functionalized SBA-15 as an Effective Catalyst for Mannich Reaction and Dye Reduction

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Copper nanoparticles dispersed on amine functionalised mesoporous silica SBA-15 (Cu/NH2-SBA-15) were synthesised by a simple sol–gel and impregnation method using sodium borohydride (NaBH4) as a reducing agent. The morphology, mesostructure and functionality of the ordered mesoporous Cu/NH2-SBA-15 were evaluated by powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Nitrogen adsorption–desorption isotherms (BET) and Fourier transform infrared spectroscopy (FTIR). The results obtained revealed, that the amine functionalised SBA-15 holds hexagonal lamelliform with surface area and pore size of 250 m2/g, 2.2 nm respectively. Moreover, these short vertical channels have a substantial role in the uniform dispersion of copper nanoparticles within the meso-channels of amine functionalised SBA-15. Cu nanoparticles in the size range of 4–7 nm were dispersed on the NH2-SBA-15 support. To confirm the potential catalytic activity, Cu/NH2-SBA-15 was tested in Mannich reaction. The catalyst showed an excellent catalytic activity for the yield (90%) of β-amino carbonyl compounds that serve as a building block for the synthesis of lactams, peptides, amino alcohols and precursor for various amino acids. Further, the activity of the catalyst was also tested for the reduction of dyes. The structural influence over the reduction pathways was studied on triphenyl methane dyes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. C. Mannich, W. Krösche, Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. Pharm. Med. Chem. 250, 647–667 (1912). https://doi.org/10.1002/ardp.19122500151

    Article  CAS  Google Scholar 

  2. M. Tramontini, L. Angiolini, Mannich bases-chemistry and uses, vol. 5 (CRC Press, Boca Raton, 1994)

    Google Scholar 

  3. M. Arend, B. Westermann, N. Risch, Modern variants of the Mannich reaction. Angew. Chem. Int. Ed. 37(8), 1044–1070 (1998). https://doi.org/10.1002/(sici)1521-3773(19980504)37:8%3c1044:aid-anie1044%3e3.0.co;2-e

    Article  Google Scholar 

  4. W.N. Speckamp, M.J. Moolenaar, New developments in the chemistry of N-acyliminium ions and related intermediates. Tetrahedron 56(24), 3817–3856 (2000). https://doi.org/10.1016/S0040-4020(00)00159-9

    Article  CAS  Google Scholar 

  5. B.M. Trost, L.R. Terrell, A direct catalytic asymmetric Mannich-type reaction to syn-amino alcohols. J. Am. Chem. Soc. 125(2), 338–339 (2003). https://doi.org/10.1021/ja028782e

    Article  CAS  PubMed  Google Scholar 

  6. S. Matsunaga, N. Kumagai, S. Harada, M. Shibasaki, Anti-Selective direct catalytic asymmetric Mannich-type reaction of hydroxyketone providing β-amino alcohols. J. Am. Chem. Soc. 125(16), 4712–4713 (2003). https://doi.org/10.1021/ja034787f

    Article  CAS  PubMed  Google Scholar 

  7. T. Akiyama, K. Matsuda, K. Fuchibe, HCl-catalyzed stereoselective Mannich reaction in H2O-SDS system. Synlett (2005). https://doi.org/10.1055/s-2004-836062

    Article  Google Scholar 

  8. T. Akiyama, J. Takaya, H. Kagoshima, One-pot Mannich-type reaction in water: HBF4 catalyzed condensation of aldehydes, amines, and silyl enolates for the synthesis of β-amino carbonyl compounds. Synlett 15(09), 1426–1428 (1999)

    Article  Google Scholar 

  9. M. Periasamy, S. Suresh, S.S. Ganesan, Stereoselective synthesis of syn-β-amino esters using the TiCl 4/R 3 N reagent system. Tetrahedron Lett. 46(33), 5521–5524 (2005). https://doi.org/10.1016/j.tetlet.2005.06.048

    Article  CAS  Google Scholar 

  10. D. Prukała, New compounds via Mannich reaction of cytosine, paraformaldehyde and cyclic secondary amines. Tetrahedron Lett. 47(51), 9045–9047 (2006). https://doi.org/10.1016/j.tetlet.2006.10.117

    Article  CAS  Google Scholar 

  11. E. Takahashi, H. Fujisawa, T. Mukaiyama, Lithium acetate-catalyzed Mannich-type reaction between trimethylsilyl enolates and aldimines in a water-containing DMF. Chem. Lett. 33(7), 936–937 (2004). https://doi.org/10.1246/cl.2004.936

    Article  CAS  Google Scholar 

  12. M. Kidwai, D. Bhatnagar, N.K. Mishra, V. Bansal, CAN catalyzed synthesis of β-amino carbonyl compounds via Mannich reaction in PEG. Catal. Commun. 9(15), 2547–2549 (2008). https://doi.org/10.1016/j.catcom.2008.07.010

    Article  CAS  Google Scholar 

  13. R.K. Sharma, D. Rawat, G. Gaba, Inorganic–organic hybrid silica based tin (II) catalyst: synthesis, characterization and application in one-pot three-component Mannich reaction. Catal. Commun. 19, 31–36 (2012). https://doi.org/10.1016/j.catcom.2011.12.006

    Article  CAS  Google Scholar 

  14. M. Kidwai, N.K. Mishra, V. Bansal, A. Kumar, S. Mozumdar, Novel one-pot Cu-nanoparticles-catalyzed Mannich reaction. Tetrahedron Lett. 50(12), 1355–1358 (2009). https://doi.org/10.1016/j.tetlet.2009.01.031

    Article  CAS  Google Scholar 

  15. B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, S. O’Brien, Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett. 6(9), 2095–2098 (2006). https://doi.org/10.1021/nl061457v

    Article  CAS  PubMed  Google Scholar 

  16. H. Berndt, A. Martin, A. Brückner, E. Schreier, D. Müller, H. Kosslick, G.U. Wolf, B.J. Lücke, Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde. J. Catal. 191(2), 384–400 (2000). https://doi.org/10.1006/jcat.1999.2786

    Article  CAS  Google Scholar 

  17. V. Fornés, C. Lopez, H.H. Lopez, A. Martınez, Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. Appl. Catal. A 249(2), 345–354 (2003). https://doi.org/10.1016/S0926-860X(03)00226-6

    Article  CAS  Google Scholar 

  18. M. Baltes, K. Cassiers, P. Van Der Voort, B.M. Weckhuysen, R.A. Schoonheydt, E.F. Vansant, MCM-48-supported vanadium oxide catalysts, prepared by the molecular designed dispersion of VO (acac) 2: a detailed study of the highly reactive MCM-48 surface and the structure and activity of the deposited VOx. J. Catal. 197(1), 160–171 (2001). https://doi.org/10.1006/jcat.2000.3066

    Article  CAS  Google Scholar 

  19. G. Du, S. Lim, M. Pinault, C. Wang, F. Fang, L. Pfefferle, G.L. Haller, Synthesis, characterization, and catalytic performance of highly dispersed vanadium grafted SBA-15 catalyst. J. Catal. 253(1), 74–90 (2008). https://doi.org/10.1016/j.jcat.2007.10.019

    Article  CAS  Google Scholar 

  20. F. Kleitz, F. Berube, R. Guillet-Nicolas, C.M. Yang, M. Thommes, Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J. Phys. Chem. C 114(20), 9344–9355 (2010). https://doi.org/10.1021/jp909836v

    Article  CAS  Google Scholar 

  21. D. Zhao, J. Sun, Q. Li, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12(2), 275–279 (2000). https://doi.org/10.1021/cm9911363

    Article  CAS  Google Scholar 

  22. C.H. Tu, A.Q. Wang, M.Y. Zheng, X.D. Wang, T. Zhang, Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. Appl. Catal. A 297(1), 40–47 (2006). https://doi.org/10.1016/j.apcata.2005.08.035

    Article  CAS  Google Scholar 

  23. K. Yoshida, C. Gonzalez-Arellano, R. Luque, P.L. Gai, Efficient hydrogenation of carbonyl compounds using low-loaded supported copper nanoparticles under microwave irradiation. Appl. Catal. A 379(1–2), 38–44 (2010). https://doi.org/10.1016/j.apcata.2010.02.028

    Article  CAS  Google Scholar 

  24. C.M. Chanquía, K. Sapag, E. Rodríguez-Castellón, E.R. Herrero, G.A. Eimer, Nature and location of copper nanospecies in mesoporous molecular sieves. J. Phys. Chem. C 114(3), 1481–1490 (2010). https://doi.org/10.1021/jp9094529

    Article  CAS  Google Scholar 

  25. B.K. Ghosh, S. Hazra, B. Naik, N.N. Ghosh, Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol. 269, 371–378 (2015). https://doi.org/10.1016/j.powtec.2014.09.027

    Article  CAS  Google Scholar 

  26. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350), 548–552 (1998). https://doi.org/10.1126/science.279.5350.548

    Article  CAS  PubMed  Google Scholar 

  27. S. Anbu Anjugam Vandarkuzhali, S. Karthikeyan, B. Viswanathan, M.P. Pachamuthu, Arachis hypogaea derived activated carbon/Pt catalyst: reduction of organic dyes. Surf. Interfaces 13, 101–111 (2018). https://doi.org/10.1016/j.surfin.2018.07.005

    Article  CAS  Google Scholar 

  28. N.A. Brunelli, K. Venkatasubbaiah, C.W. Jones, Cooperative catalysis with acid–base bifunctional mesoporous silica: impact of grafting and co-condensation synthesis methods on material structure and catalytic properties. Chem. Mater. 24(13), 2433–2442 (2012). https://doi.org/10.1021/cm300753z

    Article  CAS  Google Scholar 

  29. M.P. Pachamuthu, S. Karthikeyan, R. Maheswari, A.F. Lee, A. Ramanathan, Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1. Appl. Surf. Sci. 393, 67–73 (2017). https://doi.org/10.1016/j.apsusc.2016.09.162

    Article  CAS  Google Scholar 

  30. L. Chen, J. Hu, Z. Qi, Y. Fang, R. Richards, Gold nanoparticles intercalated into the walls of mesoporous silica as a versatile redox catalyst. Ind. Eng. Chem. Res. 50(24), 13642–13649 (2011). https://doi.org/10.1021/ie200606t

    Article  CAS  Google Scholar 

  31. R. Al-Oweini, H. El-Rossy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R″Si(OR′)3 precursors. J. Mol. Struct. 919, 140–145 (2009). https://doi.org/10.1016/j.molstruc.2008.08.025

    Article  CAS  Google Scholar 

  32. B.L. Newalkar, S. Komarneni, Control over microporosity of ordered microporous–mesoporous silica SBA-15 framework under microwave-hydrothermal conditions: effect of salt addition. Chem. Mater. 13(12), 4573–4579 (2001). https://doi.org/10.1021/cm0103038

    Article  CAS  Google Scholar 

  33. Y. Zhu, H. Li, Q. Zheng, J. Xu, X. Li, Amine-functionalized SBA-15 with uniform morphology and well-defined mesostructure for highly sensitive chemosensors to detect formaldehyde vapor. Langmuir 28(20), 7843–7850 (2012). https://doi.org/10.1021/la300560j

    Article  CAS  PubMed  Google Scholar 

  34. Y.F. Shi, Y. Meng, D.H. Chen, S.J. Cheng, P. Chen, H.F. Yang, Y. Wan, D.Y. Zhao, Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability. J. Mater. Chem. 16, 1511–1519 (2006). https://doi.org/10.1002/adfm.200500643

    Article  CAS  Google Scholar 

  35. M.P. Pachamuthu, K. Shanthi, R. Luque, A. Ramanathan, SnTUD-1: a solid acid catalyst for three component coupling reactions at room temperature. RSC Green Chem. 15, 2158–2166 (2013). https://doi.org/10.1039/C3GC40792F

    Article  CAS  Google Scholar 

  36. T.P. Loh, S.K.W. Liung, K.L. Tan, L.L. Wei, Three component synthesis of b-amino carbonyl compounds using indium trichloride-catalyzed one-pot mannich-type reaction in water. Tetrahedron 56, 3227–3323 (2000). https://doi.org/10.1016/S0040-4020(00)00221-0

    Article  CAS  Google Scholar 

  37. J. Mondal, A. Modak, A. Bhaumik, Highly efficient mesoporous base catalyzed Knoevenagel condensation of different aromatic aldehydes with malononitrile and subsequent noncatalytic Diels–Alder reactions. J. Mol. Catal. A 335, 236–241 (2011). https://doi.org/10.1016/j.molcata.2010.11.039

    Article  CAS  Google Scholar 

  38. L. Hua, Z. Hong-yao, S. Hua-wu, Bismuth(III) chloride-catalyzed one-pot Mannich reaction: three-component synthesis of β-amino carbonyl compounds. Tetrahedron Lett. 50, 6858–6860 (2009). https://doi.org/10.1016/j.tetlet.2009.09.131

    Article  CAS  Google Scholar 

  39. B.K. Ghosh, S. Hazra, B. Naik, N.N. Ghosh, Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol. 269, 371–378 (2015). https://doi.org/10.1016/j.powtec.2014.09.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Viswanathan or M. P. Pachamuthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbu Anjugam Vandarkuzhali, S., Viswanathan, B., Pachamuthu, M.P. et al. Fine Copper Nanoparticles on Amine Functionalized SBA-15 as an Effective Catalyst for Mannich Reaction and Dye Reduction. J Inorg Organomet Polym 30, 359–368 (2020). https://doi.org/10.1007/s10904-019-01194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01194-0

Keywords

Navigation