Enhanced Anti-ablation and Alkali Corrosion Resistance of Graphene Oxide Modified Urea-Melamine-Phenol Formaldehyde Composites Reinforced by R-Glass Fiber

Abstract

Graphene oxide (GO) modified urea-melamine-phenol formaldehyde resin (UMPF) was reinforced by R-glass fiber woven. GO was reduced by UMPF to reduced graphene oxide (RGO). Transmission electron microscopy (TEM), atomic force microscope (AFM), and scanning electron microscopy (SEM) were used to analyze the morphology and dispersibility of RGO in UMPF. Compared with the pure R-glass fiber woven reinforced urea-melamine-phenol formaldehyde resin (RFW-UMPF), the thermal conductivity and carbon residual value (CRV) of R-glass fiber woven reinforced GO modified urea-melamine-phenol formaldehyde resin (RFW-GO/UMPF) (0.8 wt% RGO) at 800 °C were increased by 6.3% and 20%, respectively. Anti-ablation researches revealed that with 0.8 wt% RGO loading, the linear ablation rate (LAR) and mass ablation rate (MAR) of RFW-GO/UMPF deceased by 25.6% and 12.6%, respectively. Moreover, the enhancement mechanism of RGO on anti-ablation properties and alkali corrosion resistance (ACR) performances were systematically discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S. Joseph, M.S. Sreekala, Z. Oommen, P. Koshy, S. Thomas, Compos. Sci. Technol. 62, 1857 (2002)

    Article  CAS  Google Scholar 

  2. 2.

    M.S. Sreekala, J. George, M.G. Kumaran, S. Thomas, Compos. Sci. Technol. 62, 339 (2002)

    Article  CAS  Google Scholar 

  3. 3.

    S. Wang, S. Adanur, B.Z. Jang, Compos. Part B-Eng. 28, 215 (1997)

    Article  Google Scholar 

  4. 4.

    P.O. Powers, Ind. Eng. Chem. 45, 1063 (1953)

    Article  CAS  Google Scholar 

  5. 5.

    T. Sellers Jr., For. Prod. J. 51, 12 (2001)

    CAS  Google Scholar 

  6. 6.

    T. Horikawa, K. Ogawa, K. Mizuno, J. Hayashi, K. Muroyama, Carbon 41, 465 (2003)

    Article  CAS  Google Scholar 

  7. 7.

    W. Xu, C. Wei, J. Lv, H. Liu, X. Huang, T. Liu, J. Nanomater. 2013, 86 (2013)

    Google Scholar 

  8. 8.

    M. Singh, J. Appl, Polym. Sci. 92, 3437 (2004)

    CAS  Google Scholar 

  9. 9.

    S. Tohmura, A. Inoue, S.H. Sahari, J. Wood Sci. 47, 451 (2001)

    Article  CAS  Google Scholar 

  10. 10.

    Y. Yang, Z. Chen, B. Li, L. Sha, Z. Chen, C. Wu, Y. Li, J. Ind. Text. 47, 1121 (2018)

    Article  CAS  Google Scholar 

  11. 11.

    C.C.M. Ma, C.T. Lee, H.D. Wu, J. Appl. Polym. Sci. 69, 1129 (1998)

    Article  CAS  Google Scholar 

  12. 12.

    H.D. Wu, C.C.M. Ma, M.S. Lee, Y.D. Wu, J. Appl, J. Appl. Polym. Sci. 62, 227 (1996)

    Article  CAS  Google Scholar 

  13. 13.

    H. Yang, X. Wang, H. Yuan, L. Song, Y. Hu, J. Polym. Res. 19, 9831 (2012)

    Article  CAS  Google Scholar 

  14. 14.

    J. Wei, C. Wei, L. Su, J. Fu, J. Lv, J. Mater. Sci. Chem. Eng. 3, 56 (2015)

    CAS  Google Scholar 

  15. 15.

    X. Sui, Z. Wang, Polym. Adv. Technol. 24, 593 (2013)

    Article  CAS  Google Scholar 

  16. 16.

    L. Liu, Z. Ye, Polym. Degrad. Stabil. 94, 1972 (2009)

    Article  CAS  Google Scholar 

  17. 17.

    C. Wu, Z. Chen, F. Wang, Y. Hu, E. Wang, Z. Rao, X. Zhang, Mater. Res. Express. 6, 025302 (2018)

    Article  CAS  Google Scholar 

  18. 18.

    F.Y. Yuan, H.B. Zhang, X. Li, H.L. Ma, X.Z. Li, Z.Z. Yu, Carbon 68, 653 (2014)

    Article  CAS  Google Scholar 

  19. 19.

    X. Zhao, Y. Li, J. Wang, Z. Ouyang, J. Li, G. Wei, Z. Su, ACS Appl. Mater. Int. 6, 4254 (2014)

    Article  CAS  Google Scholar 

  20. 20.

    Y. Zeng, X. Xiong, G. Li, Z. Chen, W. Sun, D. Wang, Carbon 54, 300 (2013)

    Article  CAS  Google Scholar 

  21. 21.

    K.N. Bharath, M.R. Sanjay, M. Jawaid, S.B. Harisha, S. Siengchin, J. Ind. Text. 5, 4 (2018). https://doi.org/10.1177/1528083718769926

    CAS  Article  Google Scholar 

  22. 22.

    C. Wu, Z. Chen, F. Wang, Y. Hu, E. Wang, Z. Rao, X. Zhang, Compos. Part B-Eng. 162, 378–387 (2019)

    Article  CAS  Google Scholar 

  23. 23.

    H. Zhong, J.R. Lukes, Phys. Rev. B. 74, 125403 (2006)

    Article  CAS  Google Scholar 

  24. 24.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N.L. Lau, Nano Lett. 8, 902 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    V. Alzari, V. Sanna, S. Biccai, T. Caruso, A. Politano, N. Scaramuzza, M. Sechi, D. Nuvoli, R. Sanna, A. Mariani, Compos. Part B-Eng. 60, 29 (2014)

    Article  CAS  Google Scholar 

  26. 26.

    I. Srikanth, N. Padmavathi, S. Kumar, P. Ghosal, A. Kumar, C. Subrahmanyam, Compos. Sci. Technol. 80, 1 (2013)

    Article  CAS  Google Scholar 

  27. 27.

    Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, S. Saeed, Compos. Part B-Eng. 76, 174 (2015)

    Article  CAS  Google Scholar 

  28. 28.

    B. Sang, Z. Li, X. Li, L. Yu, Z. Zhang, J. Mater. Sci. 51, 8271 (2016)

    Article  CAS  Google Scholar 

  29. 29.

    G. Huang, J. Gao, X. Wang, H. Liang, C. Ge, Mater. Lett. 66, 187 (2012)

    Article  CAS  Google Scholar 

  30. 30.

    S. Liu, H. Yan, Z. Fang, H. Wang, Compos. Sci. Technol. 90, 40 (2014)

    Article  CAS  Google Scholar 

  31. 31.

    J. Liang, Y. Huang, L. Zhang, Y. Wang, T. Guo, Y. Chen, Adv. Funct. Mater. 19, 2297 (2009)

    Article  CAS  Google Scholar 

  32. 32.

    L.C.O. Silva, G.G. Silva, P.M. Ajayan, B.G. Soares, J. Mater. Sci. 50, 6407 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); the National Natural Science Foundation of China under Grant No. 51772151; Nanjing University of Aeronautics and Astronautics PhD short-term visiting scholar project under Grant180502DF06; and The Construction Project of NUAA Suqian Institute of Advanced Materials and Equipment Manufacturing under Grant BM2016010.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Chen, Z. & Wang, F. Enhanced Anti-ablation and Alkali Corrosion Resistance of Graphene Oxide Modified Urea-Melamine-Phenol Formaldehyde Composites Reinforced by R-Glass Fiber. J Inorg Organomet Polym 29, 1818–1826 (2019). https://doi.org/10.1007/s10904-019-01144-w

Download citation

Keywords

  • Graphene oxide
  • Urea-melamine-phenol formaldehyde resin
  • Thermal performance
  • Anti-ablation
  • Alkali corrosion resistance