Skip to main content
Log in

Electrospun Fibrous PTFE Supported ZnO for Oil–Water Separation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polytetrafluoroethylene (PTFE)/polyvinyl alcohol (PVA)/ZnO composite fiber membranes were prepared by electrospinning, and PTFE/ZnO composite films were obtained after removing PVA. Considering that the spinning solution has good spinning performance, the PTFE/ZnO composite film has good flexibility and durability. The zinc oxide powder is evenly fixed on the surface of PTFE fibers, so that the film’s flexibility will not be affected during high-temperature calcination. The scanning electron micrograph shows that the morphology of the film is similar to the surface of the lotus leaf. The properties of PTFE/ZnO composite films were investigated by hydrophobic angle test and oil–water separation experiments. Results show that the PTFE/ZnO composite film has good hydrophobicity and oil–water separation performance. With the decrease in ZnO, the contact angle of the PTFE/ZnO composite film increased, and the oil–water separation performance improved. When the amount of ZnO added was 0.025 g, the contact angle was 160.9°, and the oil–water separation performance was the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Pala, E. Tokat, Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res. 36(11), 2920–2925 (2002)

    Article  CAS  Google Scholar 

  2. S.D. Richardson, T.A. Ternes, Water analysis: emerging contaminants and current issues. Anal. Chem. 83(12), 4614–4648 (2011)

    Article  CAS  Google Scholar 

  3. J. Li, D. Li, Y. Yang et al., A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem. 18(2), 541–549 (2016)

    Article  CAS  Google Scholar 

  4. A. Asatekin, A.M. Mayes, Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers. Environ. Sci. Technol. 43(12), 4487–4492 (2009)

    Article  CAS  Google Scholar 

  5. Z.X. Wang, C.H. Lau, N.Q. Zhang et al., Mussel-inspired tailoring of membrane wettability for harsh water treatment. J. Mater. Chem. A 3(6), 2650–2657 (2015)

    Article  CAS  Google Scholar 

  6. S. Sabir, Approach of cost-effective adsorbents for oil removal from oily water. Crit. Rev. Environ. Sci. Technol. 45(17), 1916–1945 (2015)

    Article  CAS  Google Scholar 

  7. Z. Chu, Y. Feng, S. Seeger, Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 54(8), 2328–2338 (2015)

    Article  CAS  Google Scholar 

  8. W.T. Cao, Y.J. Liu, M.G. Ma et al., Facile preparation of robust and superhydrophobic materials for self-cleaning and oil/water separation. Colloids Surf. A 529, 18–25 (2017)

    Article  CAS  Google Scholar 

  9. M. Liu, S. Wang, L. Jiang, Nature-inspired superwettability systems. Nat. Rev. Mater. 2(7), 17036 (2017)

    Article  CAS  Google Scholar 

  10. B. Wang, W. Liang, Z. Guo et al., Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem. Soc. Rev. 44(1), 336–361 (2015)

    Article  Google Scholar 

  11. Z. Xue, S. Wang, L. Lin et al., A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 23(37), 4270–4273 (2011)

    Article  CAS  Google Scholar 

  12. Z. Xue, Y. Cao, N. Liu et al., Special wettable materials for oil/water separation. J. Mater. Chem. A 2(8), 2445–2460 (2014)

    Article  CAS  Google Scholar 

  13. Y. Huang, C. Xiao, Q. Huang et al., Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation. J. Membr. Sci. 568, 87–96 (2018)

    Article  CAS  Google Scholar 

  14. D. Zou, M. Qiu, X. Chen et al., One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. Sep. Purif. Technol. 210, 511–520 (2019)

    Article  CAS  Google Scholar 

  15. D. Ding, H. Mao, X. Chen et al., Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions. J. Membr. Sci. 565, 303–310 (2018)

    Article  CAS  Google Scholar 

  16. J. Hong, Y. He, Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332(1), 67–75 (2014)

    Article  CAS  Google Scholar 

  17. V.A. Ganesh, H.K. Raut, A.S. Nair et al., A review on self-cleaning coatings. J. Mater. Chem. 21(41), 16304–16322 (2011)

    Article  CAS  Google Scholar 

  18. S. Laohaprapanon, A.D. Vanderlipe, B.T. Doma Jr. et al., Self-cleaning and antifouling properties of plasma-grafted poly (vinylidene fluoride) membrane coated with ZnO for water treatment. J. Taiwan Inst. Chem. Eng. 70, 15–22 (2017)

    Article  CAS  Google Scholar 

  19. J. Shen, Y. Wu, L. Fu et al., Preparation of doped TiO2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green. J. Mater. Sci. 49(5), 2303–2314 (2014)

    Article  CAS  Google Scholar 

  20. A. Haider, S. Haider, I.K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11(8), 1165–1188 (2018)

    Article  CAS  Google Scholar 

  21. F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356, 15–30 (2015)

    Article  CAS  Google Scholar 

  22. M.J. Park, R.R. Gonzales, A. Abdel-Wahab et al., Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination 426, 50–59 (2018)

    Article  CAS  Google Scholar 

  23. J.K.Y. Lee, N. Chen, S. Peng et al., Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 2018

  24. Q.L. Huang, Y. Huang, C.F. Xiao et al., Electrospun ultrafine fibrous PTFE-supported ZnO porous membrane with self-cleaning function for vacuum membrane distillation. J. Membr. Sci. 534, 73–82 (2017)

    Article  Google Scholar 

  25. Y. Huang, Q. Huang, C. Xiao et al. Supported electrospun ultrafine fibrous poly (tetrafluoroethylene)/ZnO porous membranes and their photocatalytic applications. Chem. Eng. Technol. 41(3), 656–662 (2018)

    Article  CAS  Google Scholar 

  26. W.M. Kang, H.H. Zhao, J.G. Ju et al., Electrospun Poly(tetrafluoroethylene) nanofiber membranes from PTFE-PVA-BA-H2O gel-spinning solutions. Fibers Polym. 17, 1403–1413 (2016)

    Article  CAS  Google Scholar 

  27. P. Zhao, N. Soin, K. Prashanthi et al., Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 10(6), 5880–5891 (2018)

    Article  CAS  Google Scholar 

  28. Z. Jahan, M.B.K. Niazi, ØW. Gregersen, Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J. Ind. Eng. Chem. 57, 113–124 (2018)

    Article  CAS  Google Scholar 

  29. Y. Huang, Q.L. Huang, H. Liu et al., Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes. J. Membr. Sci. 523, 317–326 (2017)

    Article  CAS  Google Scholar 

  30. R. Chen, Y. Wan, W. Wu et al., A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and ZnO nanowires. Mater. Des. 162, 246–248 (2019)

    Article  CAS  Google Scholar 

  31. H. Bai, L. Zhang, D. Gu, Micrometer-sized spherulites as building blocks for lotus leaf-like superhydrophobic coatings. Appl. Surf. Sci. 459, 54–62 (2018)

    Article  CAS  Google Scholar 

  32. C.H. Xue, X.J. Guo, J.Z. Ma et al., Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization. ACS Appl. Mater. Interfaces 7(15), 8251–8259 (2015)

    Article  CAS  Google Scholar 

  33. L. Yan, Q. Li, H. Chi et al., One-pot synthesis of acrylate resin and ZnO nanowires composite for enhancing oil absorption capacity and oil-water separation. Adv. Compos. Hybrid Mater. 1(3), 567–576 (2018)

    Article  Google Scholar 

  34. A. Rajaa, S. Ashokkumar, R.P. Marthandamc et al., Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochemis. Photobiol. B 181, 53–58 (2018)

    Article  Google Scholar 

  35. J. Hao, C. Liu, Y. Li et al., Preparation nano-structure polytetrafluoroethylene (PTFE) Functional film on the cellulose insulation polymer and its effect on the breakdown voltage and hydrophobicity properties. Materials 11.5, 851 (2018)

    Article  Google Scholar 

  36. M. Pirhashemi, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J. Colloid Interface Sci. 491, 216–229 (2017)

    Article  CAS  Google Scholar 

  37. L. Nejati-Moghadam, A. Esmaeili Bafghi-Karimabad, M. Salavati-Niasari et al., Synthesis and characterization of SnO2 nanostructures prepared by a facile precipitation method. J. Nanostruct. 5(1), 47–53 (2015)

    Google Scholar 

  38. Y. Guo, L. Kang, M. Zhu et al., A strategy toward air-stable and high-performance ZnO-based perovskite solar cells fabricated under ambient conditions. Chem. Eng. J. 336, 732–740 (2018)

    Article  CAS  Google Scholar 

  39. K.L. Harris, A.A. Pitenis, W.G. Sawyer et al., PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules 48(11), 3739–3745 (2015)

    Article  CAS  Google Scholar 

  40. X. Yu, P. Yang, M.G. Moloney et al., Electrospun gelatin membrane cross-linked by a bis (diarylcarbene) for oil/water separation: a new strategy to prepare porous organic polymers. ACS Omega 3(4), 3928–3935 (2018)

    Article  CAS  Google Scholar 

  41. N.P. Khumalo, L.N. Nthunya, E. Canck, De et al., Congo red dye removal by direct membrane distillation using PVDF/PTFE membrane. Sep. Purif. Technol. 211, 578–586 (2019)

    Article  CAS  Google Scholar 

  42. X. Gu, C. Tong, C. Lai et al., A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J. Mater. Chem. A 3(32), 16670–16678 (2015)

    Article  CAS  Google Scholar 

  43. H. Tang, L. Hao, J. Chen et al., Surface modification to fabricate superhydrophobic and superoleophilic alumina membranes for oil/water separation. Energy Fuels 32(3), 3627–3636 (2018)

    Article  CAS  Google Scholar 

  44. H. Ke, E. Feldman, P. Guzman et al., Electrospun polystyrene nanofibrous membranes for direct contact membrane distillation. J. Membr. Sci. 515, 86–97 (2016)

    Article  CAS  Google Scholar 

  45. S.S. Latthe, C. Terashima, K. Nakata et al., Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 19(4), 4256–4283 (2014)

    Article  Google Scholar 

  46. P. Liu, Y. Gao, F. Wang et al., Superhydrophobic and self-cleaning behavior of Portland cement with lotus-leaf-like microstructure. J. Clean. Prod. 156, 775–785 (2017)

    Article  CAS  Google Scholar 

  47. S. Dai, Y. Zhu, Y. Gu et al., Biomimetic fabrication and photoelectric properties of superhydrophobic ZnO nanostructures on flexible PDMS substrates replicated from rose petal. Appl. Phys. A 125(2), 138 (2019)

    Article  Google Scholar 

  48. J.J. Li, Y.N. Zhou, Z.H. Luo, Smart fiber membrane for pH-induced oil/water separation. ACS Appl. Mater. Interfaces 7(35), 19643–19650 (2015)

    Article  CAS  Google Scholar 

  49. R.H. Kollarigowda, S. Abraham, C.D. Montemagno, Antifouling cellulose hybrid biomembrane for effective oil/water separation. ACS Appl. Mater. Interfaces 9(35), 29812–29819 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21505097); Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment; Science and Technology Development Project of Suzhou (SYG201742), Science and technology development plan of Xiangcheng District-special science and technology for people’s livelihood (201708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Chen, F., Liu, C. et al. Electrospun Fibrous PTFE Supported ZnO for Oil–Water Separation. J Inorg Organomet Polym 29, 1738–1745 (2019). https://doi.org/10.1007/s10904-019-01135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01135-x

Keywords

Navigation