Skip to main content
Log in

Hydrophilic SPE/MPTES-PAN electrospun membrane prepared via click chemistry for high efficiency oil–water separation

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

There are various methods to introduce functional groups into the membrane surface to get oil–water separation performance, but most of them involve complicated reaction conditions and processes. Inspired by click chemistry, we developed a simple method to fabricate click chemistry-modified membranes. Firstly, polyacrylonitrile and γ-mercaptopropyltriethoxysilane were mixed together to prepare nanofiber membrane by electrostatic spinning method. Secondly, 3-[N,N-dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]ammonium]propane-1-sulfonate inner salt was grafted onto the membrane surface by thiol-ene click chemistry. The obtained modified membrane displays hydrophilicity and underwater oleophobicity. Driven by gravity at 1 kPa, the pure water flux of the membrane reached 787 L/(m2·h). Importantly, it also demonstrates good antifouling properties with a flux recovery rate of 94%, which is superior to the properties of most relative research. Therefore, this work provides a new idea to prepare hydrophilic nanofiber membrane that can be used in the field of oil–water separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jia YD, Guan KC, Zhang L et al (2021) Enabling polyketone membrane with underwater superoleophobicity via a hydrogel-based modification for high-efficiency oil-in-water emulsion separation. J Membr Sci 618:10. https://doi.org/10.1016/j.memsci.2020.118705

    Article  CAS  Google Scholar 

  2. Zhang J, Liu L, Si Y, Yu J, Ding B (2021) Rational design of electrospun nanofibrous materials for oil/water emulsion separation. Mater Chem Front 5:97. https://doi.org/10.1039/d0qm00436g

    Article  CAS  Google Scholar 

  3. Bolto B, Zhang JH, Wu X, Xie ZL (2020) A review on current development of membranes for oil removal from wastewaters. Membranes 10:18. https://doi.org/10.3390/membranes10040065

    Article  CAS  Google Scholar 

  4. Maggay IV, Chang Y, Venault A, Dizon GV, Wu CJ (2021) Functionalized porous filtration media for gravity-driven filtration: Reviewing a new emerging approach for oil and water emulsions separation. Sep Purif Technol 259:17. https://doi.org/10.1016/j.seppur.2020.117983

    Article  CAS  Google Scholar 

  5. Niu HF, Qiang Z, Ren J (2021) Durable, magnetic-responsive melamine sponge composite for high efficiency, in situ oil-water separation. Nanotechnology 32:11. https://doi.org/10.1088/1361-6528/abef2e

    Article  CAS  Google Scholar 

  6. Karki HP, Kafle L, Ojha DP, Song JH, Kim HJ (2018) Three-dimensional nanoporous polyacrylonitrile-based carbon scaffold for effective separation of oil from oil/water emulsion. Polymer 153:597. https://doi.org/10.1016/j.polymer.2018.08.069

    Article  CAS  Google Scholar 

  7. Putatunda S, Bhattacharya S, Sen D, Bhattacharjee C (2019) A review on the application of different treatment processes for emulsified oily wastewater. Int J Environ Sci Technol 16:2525. https://doi.org/10.1007/s13762-018-2055-6

    Article  CAS  Google Scholar 

  8. Ao CH, Zhao JQ, Li QY et al (2020) Biodegradable all-cellulose composite membranes for simultaneous oil/water separation and dye removal from water. Carbohydr Polym 250:11. https://doi.org/10.1016/j.carbpol.2020.116872

    Article  CAS  Google Scholar 

  9. Zhang Y, Ye L, Zhang B et al (2019) Characteristics and performance of PVDF membrane prepared by using NaCl coagulation bath: relationship between membrane polymorphous structure and organic fouling. J Membr Sci 579:22. https://doi.org/10.1016/j.memsci.2019.02.054

    Article  CAS  Google Scholar 

  10. Zhao Y, Yang X, Yan L et al (2021) Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. J Membr Sci 618:118525. https://doi.org/10.1016/j.memsci.2020.118525

    Article  CAS  Google Scholar 

  11. Zhang Y, Wang H, Wang X, Liu B, Wei Y (2021) An anti-oil-fouling and robust superhydrophilic MnCo2O4 coated stainless steel mesh for ultrafast oil/water mixtures separation. Sep Purif Technol 264:118435. https://doi.org/10.1016/j.seppur.2021.118435

    Article  CAS  Google Scholar 

  12. Shen K, Cheng C, Zhang T, Wang X (2019) High performance polyamide composite nanofiltration membranes via reverse interfacial polymerization with the synergistic interaction of gelatin interlayer and trimesoyl chloride. J Membr Sci 588:117192. https://doi.org/10.1016/j.memsci.2019.117192

    Article  CAS  Google Scholar 

  13. Baggio A, Doan HN, Vo PP et al (2021) Chitosan-functionalized recycled polyethylene terephthalate nanofibrous membrane for sustainable on-demand oil-water separation. Glob Chall 5:10. https://doi.org/10.1002/gch2.202000107

    Article  Google Scholar 

  14. Dehkordi TF, Shirin-Abadi AR, Karimipour K, Mahdavian AR (2021) CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation. Polymer 212:9. https://doi.org/10.1016/j.polymer.2020.123250

    Article  CAS  Google Scholar 

  15. Zhang J, Liu L, Si Y, Yu J, Ding B (2020) Electrospun nanofibrous membranes: an effective arsenal for the purification of emulsified oily wastewater. Adv Funct Mater 30:2002192. https://doi.org/10.1002/adfm.202002192

    Article  CAS  Google Scholar 

  16. Hou J, Park C, Jang W, Byun H (2021) Facile fabrication and characterization of aliphatic polyketone (PK) micro/nano fiber membranes via electrospinning and a post treatment process. RSC Adv 11:678. https://doi.org/10.1039/d0ra08119a

    Article  CAS  Google Scholar 

  17. Gou X, Zhang Y, Long L et al (2020) Superhydrophilic and underwater superoleophobic cement-coated mesh for oil/water separation by gravity. Colloids Surf Physicochem Eng Aspects 605:125338. https://doi.org/10.1016/j.colsurfa.2020.125338

    Article  CAS  Google Scholar 

  18. Helali N, Rastgar M, Farhad Ismail M, Sadrzadeh M (2020) Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation. Sep Purif Technol 238:116451. https://doi.org/10.1016/j.seppur.2019.116451

    Article  CAS  Google Scholar 

  19. Liu M, Wang S, Wei Z, Song Y, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21:665. https://doi.org/10.1002/adma.200801782

    Article  CAS  Google Scholar 

  20. Waghmare PR, Gunda NSK, Mitra SK (2015) Under-water superoleophobicity of fish scales. Sci Rep 4:7454. https://doi.org/10.1038/srep07454

    Article  CAS  Google Scholar 

  21. Wahid F, Zhao XJ, Duan YX, Zhao XQ, Jia SR, Zhong C (2021) Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation. Carbohydr Polym 257:117611. https://doi.org/10.1016/j.carbpol.2020.117611

    Article  CAS  Google Scholar 

  22. Xie W, Tiraferri A, Ji X et al (2021) Green and sustainable method of manufacturing anti-fouling zwitterionic polymers-modified poly(vinyl chloride) ultrafiltration membranes. J Colloid Interface Sci 591:343. https://doi.org/10.1016/j.jcis.2021.01.107

    Article  CAS  Google Scholar 

  23. Cao M, Chen YB, Huang XJ et al (2021) Construction of PA6-rGO nanofiber membrane via electrospraying combining electrospinning processes for emulsified oily sewage purification. J Taiwan Inst Chem Eng 118:232. https://doi.org/10.1016/j.jtice.2021.01.019

    Article  CAS  Google Scholar 

  24. Obaid M, Mohamed HO, Yasin AS et al (2017) Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux. Water Res 123:524. https://doi.org/10.1016/j.watres.2017.06.079

    Article  CAS  Google Scholar 

  25. Obaid M, Yang E, Kang D-H, Yoon M-H, Kim IS (2018) Underwater superoleophobic modified polysulfone electrospun membrane with efficient antifouling for ultrafast gravitational oil-water separation. Sep Purif Technol 200:284. https://doi.org/10.1016/j.seppur.2018.02.043

    Article  CAS  Google Scholar 

  26. Hao J, Fan Z, Xiao C, Zhao J, Liu H, Chen L (2017) Effect of stretching on continuous oil/water separation performance of polypropylene hollow fiber membrane. Iran Polym J 26:941. https://doi.org/10.1007/s13726-017-0566-5

    Article  CAS  Google Scholar 

  27. Makaremi M, De Silva RT, Pasbakhsh P (2015) Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. J Phys Chem C 119:7949. https://doi.org/10.1021/acs.jpcc.5b00662

    Article  CAS  Google Scholar 

  28. Shen X, Liu P, He CX et al (2021) Surface PEGylation of polyacrylonitrile membrane via thiol-ene click chemistry for efficient separation of oil-in-water emulsions. Sep Purif Technol 255:14. https://doi.org/10.1016/j.seppur.2020.117418

    Article  CAS  Google Scholar 

  29. Shen X, Liu P, Xu J et al (2018) Covalent immobilization of arginine onto polyacrylonitrile-based membrane for the effective separation of oil/water emulsion. Macromol Res 26:1241. https://doi.org/10.1007/s13233-019-7012-9

    Article  CAS  Google Scholar 

  30. Xue CH, Guo XJ, Zhang MM, Ma JZ, Jia ST (2015) Fabrication of robust superhydrophobic surfaces by modification of chemically roughened fibers via thiol–ene click chemistry. J Mater Chem A 3:21797. https://doi.org/10.1039/c5ta04802h

    Article  CAS  Google Scholar 

  31. Yuan T, Meng J, Hao T, Zhang Y, Xu M (2014) Polysulfone membranes clicked with poly (ethylene glycol) of high density and uniformity for oil/water emulsion purification: effects of tethered hydrogel microstructure. J Membr Sci 470:112. https://doi.org/10.1016/j.memsci.2014.07.013

    Article  CAS  Google Scholar 

  32. Wang B, Gao C, Huang Y et al (2021) Preparation of superhydrophobic nylon-56/cotton-interwoven fabric with dopamine-assisted use of thiol–ene click chemistry. RSC Adv 11:10699. https://doi.org/10.1039/d1ra00410g

    Article  CAS  Google Scholar 

  33. Fattah TA, Saeed A, Albericio F (2018) Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry. J Fluorine Chem 213:87. https://doi.org/10.1016/j.jfluchem.2018.07.008

    Article  CAS  Google Scholar 

  34. Fang Y, Liu C, Li M et al (2020) Facile generation of durable superhydrophobic fabrics toward oil/water separation via thiol-ene click chemistry. Ind Eng Chem Res 59:6130. https://doi.org/10.1021/acs.iecr.9b06761

    Article  CAS  Google Scholar 

  35. Jun I, Han HS, Edwards JR, Jeon H (2018) Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci 19:14. https://doi.org/10.3390/ijms19030745

    Article  CAS  Google Scholar 

  36. Tiwari SK, Venkatraman SS (2012) Importance of viscosity parameters in electrospinning: of monolithic and core-shell fibers. Mater Sci Eng C 32:1037. https://doi.org/10.1016/j.msec.2012.02.019

    Article  CAS  Google Scholar 

  37. Surianarayanan M, Vijayaraghavan R, Raghavan KV (1998) Spectroscopic investigations of polyacrylonitrile thermal degradation. J Appl Polym Sci 36:2503. https://doi.org/10.1002/(sici)1099-0518(199810)36:14%3c2503::Aid-pola9%3e3.3.Co;2-I

    Article  CAS  Google Scholar 

  38. Martin SC, Liggat JJ, Snape CE (2001) In situ NMR investigation into the thermal degradation and stabilisation of PAN. Polym Degrad Stab 74:407. https://doi.org/10.1016/s0141-3910(01)00173-2

    Article  CAS  Google Scholar 

  39. Wang K, Zhang TC, Wei BB, Chen SX, Liang Y, Yuan SJ (2021) Durable CNTs reinforced porous electrospun superhydrophobic membrane for efficient gravity driven oil/water separation. Colloids Surf Physicochem Eng Aspects 608:9. https://doi.org/10.1016/j.colsurfa.2020.125342

    Article  CAS  Google Scholar 

  40. Zhu YZ, Wang D, Jiang L, Jin J (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater 6:11. https://doi.org/10.1038/am.2014.23

    Article  CAS  Google Scholar 

  41. Ao CH, Zhao JQ, Xia T et al (2021) Multifunctional La(OH)3@cellulose nanofibrous membranes for efficient oil/water separation and selective removal of dyes. Sep Purif Technol 254:10. https://doi.org/10.1016/j.seppur.2020.117603

    Article  CAS  Google Scholar 

  42. Zhao K, Wang Y, Wang W, Yu D (2018) Moisture absorption, perspiration and thermal conductive polyester fabric prepared by thiol-ene click chemistry with reduced graphene oxide finishing agent. J Mater Sci 53:14262. https://doi.org/10.1007/s10853-018-2671-z

    Article  CAS  Google Scholar 

  43. Shakiba M, Nabavi SR, Emadi H, Faraji M (2021) Development of a superhydrophilic nanofiber membrane for oil/water emulsion separation via modification of polyacrylonitrile/polyaniline composite. Polym Adv Technol 32:1301. https://doi.org/10.1002/pat.5178

    Article  CAS  Google Scholar 

  44. Zang LL, Zheng SX, Wang LB, Ma J, Sun LG (2020) Zwitterionic nanogels modified nanofibrous membrane for efficient oil/water separation. J Membr Sci 612:8. https://doi.org/10.1016/j.memsci.2020.118379

    Article  CAS  Google Scholar 

  45. Zhang TH, Zhang CY, Zhao GQ et al (2020) Electrospun composite membrane with superhydrophobic-superoleophilic for efficient water-in-oil emulsion separation and oil adsorption. Colloids Surf Physicochem Eng Aspects 602:11. https://doi.org/10.1016/j.colsurfa.2020.125158

    Article  CAS  Google Scholar 

  46. Guo JW, Wang CF, Chen SH, Lai JY, Lu CH, Chen JK (2020) Highly efficient self-cleaning of heavy polyelectrolyte coated electrospun polyacrylonitrile nanofibrous membrane for separation of oil/water emulsions with intermittent pressure. Sep Purif Technol 234:15. https://doi.org/10.1016/j.seppur.2019.116106

    Article  CAS  Google Scholar 

  47. Ying T, Su JF, Jiang YJ, Ke QF, Xu H (2020) A pre-wetting induced superhydrophilic/superlipophilic micro-patterned electrospun membrane with self-cleaning property for on-demand emulsified oily wastewater separation. J Hazard Mater 384:11. https://doi.org/10.1016/j.jhazmat.2019.121475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, B., Du, C., Wang, W. et al. Hydrophilic SPE/MPTES-PAN electrospun membrane prepared via click chemistry for high efficiency oil–water separation. J Mater Sci 57, 1474–1488 (2022). https://doi.org/10.1007/s10853-021-06688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06688-2

Navigation