Skip to main content

Advertisement

Log in

In Situ Chemical Synthesis of MnO2/HMCNT Nanocomposite with a Uniquely Developed Three-Dimensional Open Porous Architecture for Supercapacitors

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The successful application of supercapacitors in energy conversion and storage hinges on the development of highly efficient and stable electrode materials. While a fast and facile synthesis of superior performance of supercapacitors is still a challenge. Motivated by this, MnO2/heteroatom-doped mesoporous carbon nanotubes (HMCNTs) with a uniquely developed three-dimensional open porous system containing mesopores and micropores are synthesized by a facile one-step chemical coprecipitation method for supercapacitor electrodes. The HMCNTs in the composite serve not only as the template for the growth of MnO2 particles, but also as the electrically conductive channel for electrochemical performance enhancement. The MnO2/HMCNTs nanocomposite electrode exhibits much larger specific capacitance compared with both the HMCNTs electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/HMCNTs nanocomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport. Moreover, the MnO2/HMCNTs also shows superior cycling stability with only 3.7% capacitance drop after 5000 cycles. The enhanced electrochemical performance of the MnO2/HMCNTs makes them a promising electrode material for application in supercapacitors and potentially other energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Li, Q. Chen, H. Zhan, Ultrathin manganese dioxide nanosheets grown on partially unzipped nitrogen-doped carbon nanotubes for high-performance asymmetric supercapacitors. J. Alloys Compd. 702, 236–243 (2017)

    Article  CAS  Google Scholar 

  2. S. Xie, X.N. Guo, G.Q. Jin, X.L. Tong, Y.Y. Wang, X.Y. Guo, In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes. Chem. Commun. (Camb) 50(2), 228–230 (2014)

    Article  CAS  Google Scholar 

  3. Y. Zhou, R. Ma, S.L. Candelaria, J. Wang, Q. Liu, E. Uchaker, P. Li, Y. Chen, G. Cao, Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J. Power Sources 314, 39–48 (2016)

    Article  CAS  Google Scholar 

  4. Y. Deng, Y. Xie, K. Zou, X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4(4), 1144–1173 (2016)

    Article  CAS  Google Scholar 

  5. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016)

    Article  CAS  Google Scholar 

  6. Y. Wang, C.Y. Foo, T.K. Hoo, M. Ng, J. Lin, Designed smart system of the sandwiched and concentric architecture of RuO2/C/RuO2 for high performance in electrochemical energy storage. Chemistry 16(12), 3598–3603 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. J. Xu, L. Dong, C. Li, H. Tang, Facile synthesis of Mo0.91W0.09S2 ultrathin nanosheets/amorphous carbon composites for high-performance supercapacitor. Mater. Lett. 162, 126–130 (2016)

    Article  CAS  Google Scholar 

  8. H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Growth of polypyrrole ultrathin films on MoS(2) monolayers as high-performance supercapacitor electrodes. Adv. Mater. 27(6), 1117–1123 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, C.W. Siong, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior. Ceram. Int. 41(9), 11418–11427 (2015)

    Article  CAS  Google Scholar 

  10. A.K. Das, S.K. Karan, B.B. Khatua, High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim. Acta 180, 1–15 (2015)

    Article  CAS  Google Scholar 

  11. G. Xin, Y. Wang, J. Zhang, S. Jia, J. Zang, Y. Wang, A self-supporting graphene/MnO2 composite for high-performance supercapacitors. Int. J. Hydrog. Energy 40(32), 10176–10184 (2015)

    Article  CAS  Google Scholar 

  12. R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, H.E. Unalan, Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl. Mater. Interfaces 6(17), 15434–15439 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Fan, P. Liu, B. Zhu, S. Chen, K. Yao, R. Han, Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. Int. J. Hydrog. Energy 40(18), 6188–6196 (2015)

    Article  CAS  Google Scholar 

  14. T.-T. Lin, W.-H. Lai, Q.-F. Lü, Y. Yu, Porous nitrogen-doped graphene/carbon nanotubes composite with an enhanced supercapacitor performance. Electrochim. Acta 178, 517–524 (2015)

    Article  CAS  Google Scholar 

  15. B. You, L. Wang, L. Yao, J. Yang, Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem. Commun. (Camb) 49(44), 5016–5018 (2013)

    Article  CAS  Google Scholar 

  16. X. Jiang, Y. Cao, P. Li, J. Wei, K. Wang, D. Wu, H. Zhu, Polyaniline/graphene/carbon fiber ternary composites as supercapacitor electrodes. Mater. Lett. 140, 43–47 (2015)

    Article  CAS  Google Scholar 

  17. S. Dhibar, C.K. Das, Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes. J. Alloys Compd. 653, 486–497 (2015)

    Article  CAS  Google Scholar 

  18. N. Phattharasupakun, J. Wutthiprom, P. Chiochan, P. Suktha, M. Suksomboon, S. Kalasina, M. Sawangphruk, Turning conductive carbon nanospheres into nanosheets for high-performance supercapacitors of MnO2 nanorods. Chem. Commun. (Camb) 52(12), 2585–2588 (2016)

    Article  CAS  Google Scholar 

  19. Y. Yu, Y. Zhai, H. Liu, L. Li, Single-layer MnO2 nanosheets: from controllable synthesis to free-standing film for flexible supercapacitors. Mater. Lett. 176, 33–37 (2016)

    Article  CAS  Google Scholar 

  20. M.S. Kolathodi, M. Palei, T.S. Natarajan, Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J. Mater. Chem. A 3(14), 7513–7522 (2015)

    Article  CAS  Google Scholar 

  21. A. Liu, H. Che, Y. Mao, Y. Wang, J. Mu, C. Wu, Y. Bai, X. Zhang, G. Wang, Template-free synthesis of one-dimensional hierarchical NiO nanotubes self-assembled by nanosheets for high-performance supercapacitors. Ceram. Int. 42(9), 11435–11441 (2016)

    Article  CAS  Google Scholar 

  22. X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma, Y. Qu, Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl. Mater. Interfaces 7(36), 20322–20331 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. X. Pan, X. Chen, Y. Li, Z. Yu, Facile synthesis of Co3O4 nanosheets electrode with ultrahigh specific capacitance for electrochemical supercapacitors. Electrochim. Acta 182, 1101–1106 (2015)

    Article  CAS  Google Scholar 

  24. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22(8), E28–E62 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. S. Kong, K. Cheng, T. Ouyang, K. Ye, Y. Gao, G. Wang, D. Cao, Freestanding one-dimensional manganese dioxide nanoflakes-titanium cabide/carbon core/double shell arrays as ultra-high performance supercapacitor electrode. J. Power Sources 293, 519–526 (2015)

    Article  CAS  Google Scholar 

  26. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7(2), 281–286 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. C. Xia, Y. Xie, H. Du, W. Wang, Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode. J. Nanoparticle Res. 17(1), 30 (2015)

    Article  CAS  Google Scholar 

  28. Y. Jiang, X. Cui, L. Zu, Z. Hu, J. Gan, H. Lian, Y. Liu, G. Xing, Preparation and electrochemical properties of mesoporous manganese dioxide-based composite electrode for supercapacitor. J. Nanosci. Nanotechnol. 17(1), 507–516 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. C. Hao, X. Wang, Y. Yin, Z. You, Modeling and simulation of a lithium manganese oxide/activated carbon asymmetric supercapacitor. J. Electron. Mater. 45(1), 515–526 (2015)

    Article  CAS  Google Scholar 

  30. S.A. Klankowski, G.P. Pandey, G. Malek, C.R. Thomas, S.L. Bernasek, J. Wu, J. Li, Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale 7(18), 8485–8494 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. C.H. Ng, H.N. Lim, Y.S. Lim, W.K. Chee, N.M. Huang, Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int. J. Energy Res. 39(3), 344–355 (2015)

    Article  CAS  Google Scholar 

  32. L. Qie, W.M. Chen, Z.H. Wang, Q.G. Shao, X. Li, L.X. Yuan, X.L. Hu, W.X. Zhang, Y.H. Huang, Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24(15), 2047–2050 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. L. Zhu, Y. Xu, W. Yuan, J. Xi, X. Huang, X. Tang, S. Zheng, One-pot synthesis of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes via an in situ template approach. Adv. Mater. 18(22), 2997–3000 (2006)

    Article  CAS  Google Scholar 

  34. K. Chen, X. Huang, C. Wan, H. Liu, Heteroatom-doped mesoporous carbon nanofibers based on highly cross-linked hybrid polymeric nanofibers: facile synthesis and application in an electrochemical supercapacitor. Mater. Chem. Phys. 164, 85–90 (2015)

    Article  CAS  Google Scholar 

  35. T. Gao, H. Fjellvag, P. Norby, A comparison study on Raman scattering properties of alpha- and beta-MnO2. Anal. Chim. Acta 648(2), 235–239 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Nitrogen-enriched core-shell structured Fe/Fe(3)C–C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(11), 1399–1404 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. G. Yang, H. Han, T. Li, C. Du, Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent. Carbon 50(10), 3753–3765 (2012)

    Article  CAS  Google Scholar 

  38. D.G. Lee, J.H. Kim, B.-H. Kim, Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: effect of poly(methyl methacrylate) concentration. Electrochim. Acta 200, 174–181 (2016)

    Article  CAS  Google Scholar 

  39. Y. Liu, X. Cai, B. Luo, M. Yan, J. Jiang, W. Shi, MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes. Carbon 107, 426–432 (2016)

    Article  CAS  Google Scholar 

  40. L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118(40), 22865–22872 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant Nos. 21274092, 91441205), and Shanghai Science & Technology Committee (Grant No. 10ZR1416100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Huang, X., Liu, H. et al. In Situ Chemical Synthesis of MnO2/HMCNT Nanocomposite with a Uniquely Developed Three-Dimensional Open Porous Architecture for Supercapacitors. J Inorg Organomet Polym 29, 1587–1596 (2019). https://doi.org/10.1007/s10904-019-01122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01122-2

Keywords

Navigation