Skip to main content

Advertisement

Log in

Synthesis of hierarchical porous CoS2/MWCNTs nanohybrids as electrode for high-performance supercapacitors with enhanced rate capability and cycling stability

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Here we report a facile one-step hydrothermal synthesis of cobalt sulfide-modified multi-walled carbon nanotubes (CoS2/MWCNTs) nanohybrids as electrode materials for application in supercapacitor. Benefiting from the stable network structure constructed by the synergistic effect of MWCNTs and cobalt sulfide materials, the volume change caused by ion intercalation/de-intercalation during the charging/discharging process is buffered, thus reducing the influence on the electrochemical performance, which greatly enhances the rate capability and cycling stability of the nanohybrids electrode. Through the synergistic enhancement effect of cobalt sulfide and MWCNT electrode materials, the electrochemical energy storage performance of the nanohybrids is greatly improved. The optimal CoS2/MWCNT-30 electrode exhibits a high specific capacitance of 632.5 F g−1, excellent rate capability of 81.5% (0.3–10 A g−1), and outstanding cycling stability with about 95.3% retention after 5000 cycles. These results indicate that the CoS2/MWCNT-30 nanohybrid electrode synthesized by a facile and cost-effective synthesis pathway has excellent electrochemical energy storage performance and has a great prospect as an electrode material for the application of high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang FX, Wu XW, Yuan XH, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854

    Article  CAS  PubMed  Google Scholar 

  2. Pan ZH, Yang J, Zhang QC, Liu MN, Hu YT, Kou ZK, Liu N, Yang X, Ding XY, Chen H, Li J, Zhang K, Qiu YC, Li QW, Wang J, Zhang YG (2019) All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv Energy Mater 9:1802753

    Article  CAS  Google Scholar 

  3. Li J, Qiao J, Lian K (2020) Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: A review. Energy Storage Mater 24:6–21

    Article  Google Scholar 

  4. Zhao XJ, Jia YH, Liu ZH (2019) GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. J Colloid Interf Sci 536:463–473

    Article  CAS  Google Scholar 

  5. Song YZ, Zhao XJ, Liu ZH (2021) Surface selenium doped hollow heterostructure/defects Co-Fe sulfide nanoboxes for enhancing oxygen evolution reaction and supercapacitors. Electrochim Acta 374:137962

    Article  CAS  Google Scholar 

  6. Li ZJ, Zhang WY, Sun CY, Feng ZF, Yang BC (2016) Controlled synthesis of Ni(OH)2/graphene composites and their transformation to NiO/graphene for energy storage. Electrochim Acta 212:390–398

    Article  CAS  Google Scholar 

  7. Li QH, Lu W, Li ZP, Ning JQ, Zhong YJ, Hu Y (2020) Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem Eng J 380:122544

    Article  CAS  Google Scholar 

  8. Liu YY, Yu JX, Guo DF, Li ZJ, Su YJ (2019) Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. J Alloy Compd 815:152403–152418

    Article  CAS  Google Scholar 

  9. Yu JH, Xie FF, Wu ZC, Huang T, Wu JF, Yan DD, Huang CQ, Li L (2018) Flexible metallic fabric supercapacitor based on graphene/polyaniline composites. Electrochim Acta 259:968–974

    Article  CAS  Google Scholar 

  10. Lu BR, Li SB, Pan J, Zhang L, Xin JJ, Chen Y, Tan XG (2020) pH-controlled assembly of five new organophosphorus Strandberg-type cluster-based coordination polymers for enhanced electrochemical capacitor performance. Inorg Chem 59:1702–1714

    Article  CAS  PubMed  Google Scholar 

  11. Wang C, Sui GZ, Guo DX, Li JL, Zhang L, Li SB, Xin JJ, Chai DF, Guo WX (2021) Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction. J Colloid Interf Sci 599:577–585

    Article  CAS  Google Scholar 

  12. Yan JJ, Zhu DZ, Lv YK, Xiong W, Liu MX, Gan LH (2020) Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. Chinese Chem Lett 31:579–582

    Article  CAS  Google Scholar 

  13. Wei HG, Wang H, Li A, Li HQ, Cui DP, Dong MY, Lin J, Fan JC, Zhang JX, Hou H, Shi YP, Zhou DF, Guo ZH (2020) Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. J Alloy Compd 820:153111

    Article  CAS  Google Scholar 

  14. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475

    Article  PubMed  CAS  Google Scholar 

  15. Wen L, Li F, Cheng HM (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28:4306–4337

    Article  CAS  PubMed  Google Scholar 

  16. Chu DW, Nashalian A, Zhou YH, Zhao X, Guo DX, He RR, Chen WW, Chen J (2020) Low-cost and nature-friendly hierarchical porous carbon for enhanced capacitive electrochemical energy storage. ACS Appl Energy Mater 3:7246–7250

    Article  CAS  Google Scholar 

  17. Zhang C, Geng XP, Tang SL, Deng MS, Du YW (2017) NiCo2O4@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes. J Mater Chem A 5:5912–5919

    Article  CAS  Google Scholar 

  18. Zhang WY, Kang HW, Liu HL, Yang BC, Liu YX, Yuan MK, Li ZK (2019) 1-Aminopyrene/rGO nanocomposites for electrochemical energy storage with improved performance. Chem Eng J 361:189–198

    Article  CAS  Google Scholar 

  19. Avasthi P, Arya N, Singh M, Balakrishnan V (2020) Fabrication of iron oxide-CNT based flexible asymmetric solid state supercapacitor device with high cyclic stability. Nanotechnology 31:435402

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Zhao AR, He XX, Li Q, Sun J, Lei ZB, Liu ZH (2020) Ti3C2Tx/RGO//PANI/RGO all-solid-state asymmetrical fiber supercapacitor with high energy density and superior flexibility. J Alloy Compd 861:157950

    Article  CAS  Google Scholar 

  21. Zhang S, Li DH, Chen S, Yang XF, Zhao XL, Zhao QS, Komarneni S, Yang DJ (2017) Highly stable supercapacitors with MOF-derived Co9S8/carbon electrodes for high rate electrochemical energy storage. J Mater Chem A 5:12453–12461

    Article  CAS  Google Scholar 

  22. Bu FX, Xiao PT, Chen JD, Aboud MFA, Shakir I, Xu YX (2018) Rational design of three-dimensional graphene encapsulated core-shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries. J Mater Chem A 6:6414–6421

    Article  CAS  Google Scholar 

  23. Zhao XJ, Song YZ, Liu ZH (2020) Kinetics enhanced hierarchical Ni2P1-xSx/Ni@carbon/graphene yolk–shell microspheres boosting advanced sodium/potassium storage. J Mater Chem A 8:23994–24004

    Article  CAS  Google Scholar 

  24. Subramani K, Sudhan N, Divya R, Sathish M (2017) All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv 7:6648–6659

    Article  CAS  Google Scholar 

  25. Wang SC, Xiong DK, Chen C, Gu ML, Yi FY (2020) The controlled fabrication of hierarchical CoS2@NiS2 core-shell nanocubes by utilizing prussian blue analogue for enhanced capacitive energy storage performance. J Power Sources 450:227712

    Article  CAS  Google Scholar 

  26. Dong CF, Guo LJ, Li HB, Zhang B, Gao X, Tian F, Qian YT, Wang DB, Xu LQ (2019) Rational fabrication of CoS2/Co4S3@N-doped Carbon microspheres as excellent cycling performance anode for half/full Sodium Ion Batteries. Energy Storage Mater 25:679–686

    Article  Google Scholar 

  27. Mohammadi A, Arsalani N, Tabrizi AG, Moosavifard SE, Naqshbandi Z, Ghadimi LS (2018) Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem Eng J 334:66–80

    Article  CAS  Google Scholar 

  28. Guo C, Zhang WC, Liu Y, He JP, Yang S, Liu MK, Wang QH, Guo ZP (2019) Constructing CoO/Co3S4 Heterostructures Embedded in N-doped Carbon Frameworks for High-Performance Sodium-Ion Batteries. Adv Funct Mater 29:1901925

    Article  CAS  Google Scholar 

  29. Chang Y, Sui YW, Qi JQ, Jiang LY, He YZ, Wei FX, Meng QK, Jin YX (2016) Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim Acta 226:69–78

    Article  CAS  Google Scholar 

  30. Pan YL, Cheng XD, Gong LL, Shi L, Zhou T, Deng YR, Zhang HP (2018) Double-Morphology CoS2 Anchored on N-Doped Multichannel Carbon Nanofibers as High-Performance Anode Materials for Na-Ion Batteries. ACS Appl Mater Inter 10:31441–31451

    Article  CAS  Google Scholar 

  31. Sarkar A, Chakraborty AK, Bera S, Krishnamurthy S (2018) Novel Hydrothermal Synthesis of CoS2/MWCNT Nanohybrid Electrode for Supercapacitor: A Systematic Investigation on the Influence of MWCNT. J Phys Chem C 122:18237–18246

    Article  CAS  Google Scholar 

  32. Trung NB, Van Tam T, Dang DK, Babu KF, Kim EJ, Kim J, Choi WM (2015) Facile Synthesis of Three-Dimensional Graphene/Nickel Oxide Nanoparticles Composites forHigh Performance Supercapacitor Electrodes. Chem Eng J 264:603–609

    Article  CAS  Google Scholar 

  33. Zhang WY, Chen L, Liu HL, Kang HW, Zhang SR, Yang BC, Wang Y, Yuan MK, Li ZK (2020) High capacitive and super-long life supercapacitor fabricated by 7-aminoindole/reduced graphene oxide composite. Electrochim Acta 332:135528

    Article  CAS  Google Scholar 

  34. Pan H, Li JY, FengY P (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding B, Guo D, Wang YH, Wu XL, Fan ZJ (2018) Functionalized graphene nanosheets decorated on carbon nanotubes networks for high performance supercapacitors. J Power Sources 398:113–119

    Article  CAS  Google Scholar 

  36. Liu J, Wu C, Xiao DD, Kopold P, Gu L, van Aken PA, Maier J, Yu Y (2016) MOF-Derived Hollow Co9S8 Nanoparticles Embedded in Graphitic CarbonNanocages with Superior Li-Ion Storage. Small 12:2354–2364

    Article  CAS  PubMed  Google Scholar 

  37. Shadike Z, Cao MH, Ding F, Sang L, Fu ZW (2015) Improved ElectrochemicalPerformance of CoS2-MWCNT Nanocomposites for Sodium-Ion Batteries. Chem Commun 51:10486–10489

    Article  CAS  Google Scholar 

  38. Qu BH, Chen YJ, Zhang M, Hu LL, Lei DN, Lu BA, Li QH, Wang YG, Chen LB, Wang TH (2012) β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale 4:7810–7816

    Article  CAS  PubMed  Google Scholar 

  39. Qiu WD, Jiao JQ, Xia J, Zhong HM, Chen LP (2015) A Self-Standing and Flexible Electrode of Yolk-Shell CoS2 Spheres Encapsulated with Nitrogen-Doped Graphene for High-Performance Lithium-Ion Batteries. Chem-Eur J 21:4359–4367

    Article  CAS  PubMed  Google Scholar 

  40. Seo SD, Park D, Park S, Kim DW (2019) “Brain-Coral-Like” Mesoporous Hollow CoS2@N-Doped Graphitic Carbon Nanoshells as Efficient Sulfur Reservoirs for Lithium-Sulfur Batteries. Adv Funct Mater 29:1903712

    Article  CAS  Google Scholar 

  41. Zou KY, Liu YC, Jiang YF, Yu CY, Yue ML, Li ZX (2017) Benzoate Acid-Dependent Lattice Dimension of Co-MOFs and MOF-Derived CoS2@CNTs with Tunable Pore Diameters for Supercapacitors. Inorg Chem 56:6184–6196

    Article  CAS  PubMed  Google Scholar 

  42. Chen W, Li Y, Han X, Zhao XR, Zhao Y (2017) Self-assembled Co9S8/RGO-CNT interconnected architecture as composite electrode for supercapacitors. RSC Adv 7:6835–6841

    Article  CAS  Google Scholar 

  43. Wei DD, Zhang YL, Zhu XZ, Fan ML, Wang YL (2020) CNT/Co3S4@NiCo LDH ternary nanocomposites as battery-type electrode materials for hybrid supercapacitors. J Alloy Compd 824:153937

    Article  CAS  Google Scholar 

  44. Kim SI, Thiyagarajan P, Jang JH (2014) Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition. Nanoscale 6:11646–11652

    Article  CAS  PubMed  Google Scholar 

  45. Tang JH, Shen JF, Li N, Ye MX (2014) A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors. Ceram Int 40:15411–15419

    Article  CAS  Google Scholar 

  46. Chen YM, Li XY, Park K, Zhou LM, Huang HT, Mai YW, Goodenough JB (2016) Hollow Nanotubes of N-Doped Carbon on CoS. Angew Chem Int Edit 55:15831–15834

    Article  CAS  Google Scholar 

  47. Pan YL, Cheng XD, Huang YJ, Gong LL, Zhang HP (2017) CoS2 nanoparticles wrapping on flexible freestanding multichannel carbon nanofibers with high performance for Na-Ion batteries. ACS Appl Mater Inter 9:35820–35828

    Article  CAS  Google Scholar 

  48. Hua WB, Guo XD, Zheng Z, Wang YJ, Zhong BH, Fang BZ, Wang JZ, Chou SL, Liu H (2015) Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. J Power Sources 275:200–206

    Article  CAS  Google Scholar 

  49. Hu T, Liu YY, Zhang YF, Chen M, Zheng JQ, Tang J, Meng CG (2018) 3D hierarchical porous V3O7·H2O nanobelts/CNT/reduced graphene oxide integrated composite with synergistic effect for supercapacitors with high capacitance and long cycling life. J Colloid Interf Sci 531:382–393

    Article  CAS  Google Scholar 

  50. Zhang WY, Sun CY, Xu YG, Kang HW, Yang BC, Liu HL, Li ZK (2020) Self-assembling porous network nanostructure 7-aminoindole decorated reduced graphene oxide for high-performance asymmetric supercapacitor. J Alloy Compd 835:155412

    Article  CAS  Google Scholar 

  51. Huang F, Meng RD, Sui YW, Wei FX, Qi JQ, Meng QK, He YZ (2018) One-step hydrothermal synthesis of a CoS2@MoS2 nanocomposite for high-performance supercapacitors. J Alloy Compd 742:844–851

    Article  CAS  Google Scholar 

  52. Peng H, Wei CD, Wang K, Meng TY, Ma GF, Lei ZQ, Gong X (2017) The Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. Acs Appl Mater Interfaces 9:17067–17075

    Article  CAS  PubMed  Google Scholar 

  53. Wang LN, Zhang X, Ma Y, Yang M, Qi YX (2017) Supercapacitor Performances of the MoS2/CoS2 Nanotube Arrays in Situ Grown on Ti Plate. J Phys Chem C 121:9089–9095

    Article  CAS  Google Scholar 

  54. Shi KY, Zhitomirsky I (2013) Polypyrrole nanofiber-carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant. J Mater Chem A 1:11614–11622

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge projects funded by the Key Research of Department Education of Henan Province (19A140022), the science and technology project of Henan Province (No.202102210457), Natural Science Foundation of Henan Province (No.202300410507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijiong Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 601 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Zhang, W., Sun, M. et al. Synthesis of hierarchical porous CoS2/MWCNTs nanohybrids as electrode for high-performance supercapacitors with enhanced rate capability and cycling stability. Ionics 27, 4483–4494 (2021). https://doi.org/10.1007/s11581-021-04221-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04221-8

Keywords

Navigation